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The k-server pr0b|em [Manasse, McGeoch, Sleator '90]

» one of the central problems in Online Optimization
» studied intensively for several decades

» its study contributed many techniques to Online Algorithms
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The k-server pr0b|em [Manasse, McGeoch, Sleator '90]

> k servers in given metric space
> sequence of requests received online

> target: minimize the distance travelled by the servers
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The k-server pr0b|em [Manasse, McGeoch, Sleator '90]

> k servers in given metric space
> sequence of requests received online

> target: minimize the distance travelled by the servers

k=2

B

o=1( 4, 1, 7, 7, ..)

» Competitive ratio: 8%,%;-
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The k-server pr0b|em [Manasse, McGeoch, Sleator '90]

Competitive ratio for k-server problem:

upper bound lower bound

deterministic: 2k —1 k
randomized: log® k Io'g"ﬁ):k
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The k-server pr0b|em [Manasse, McGeoch, Sleator '90]

Competitive ratio for k-server problem:

upper bound lower bound

deterministic: 2k —1 k
randomized: log® k Io'g"ﬁ);k

Natural variants not yet understood:

> e.g. weighted k-server, CNN, generalized k-server
> existing proofs for k-server do not extend

» several successful k-server algorithms not competitive
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Example 1: weighted k-server [riat, Rickiin "94]

> servers have weights: wi, Wy, ..., Wy
> target: minimize the weighted distance travelled
» if server i moves by distance D, we pay D - w;

w =1
(53
w =100
0 2 3
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Example 1: weighted k-server [riat, Rickiin "94]

> servers have weights: wi, Wy, ..., Wy
> target: minimize the weighted distance travelled
» if server i moves by distance D, we pay D - w;

w._ =1

&

w =100
2= =

0 1 2 3

> 2 servers in a line: already non-trivial
no memoryless algorithm competitive [Chrobak, Sgall '04]

» for standard k-server, harmonic algorithm works
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Example 1: weighted k-server [riat, Rickiin "94]

Known results

» upper bounds only for special cases

» for uniform metrics by Fiat and Ricklin '94
» for k =2 by Sitters and Stougie '06

> lower bound: 227" by Bansal et al. FOCS'17

upper bound lower bound

uniform metrics: 201 920
k =2: O(1) Q(1)
k> 2: 77 20
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Examp|e 2: CNN pr0b|em [Koutsoupias, Taylor '04]

> k servers, each moving in its own line metric

» for k =2: moving live-broadcast vehicles in a city

> target: minimize the distance travelled by the servers
Streets
3rd

I R O e O e

Avenues

1st 3rd

requests:

ALG: (2,1)
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Examp|e 2: CNN pr0b|em [Koutsoupias, Taylor '04]

Known results:
» upper bound for k =2 by Sitters and Stougie '06

» doubly-exponential lower bound by Bansal et al. '17

upper bound lower bound

Kk =2: 0(1) Q1)
k> 2: 7? 920K

Bansal, Elids, Koumoutsos, Nederlof: Generalized k-Server Problem slide: 8/21



The generalized k-server problem [koutsoupias, Taylor 04]

> each server moves in its own metric: (My,d1),..., (M, dy)
> at time t: we receive request (1],...,7L), 1T € M
» ALG has to select some server i and move it to 1}.

> target: minimize the distance travelled by the servers

M, . .2 3

MB °
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The generalized k-server problem [koutsoupias, Taylor 04]

> each server moves in its own metric: (My,d1),..., (M, dy)

> at time t: we receive request (1],...,7L), 1T € M
» ALG has to select some server i and move it to 1}.

> target: minimize the distance travelled by the servers

My
t=(1,c,
My (1,¢,)
cost: da(a,c)
M3
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Generalized k-server: special cases

The k-server problem

» all metrics are the same: My =---= My

» each request has all coordinates equal: Tt = (ot, ..., o)

» ot is then the request for the k-server instance
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The weighted k-server problem

» for each i, Mj = w;M (a scaled copy of some fixed M)

» each request has all coordinates equal: Tt = (ot, ..., ot)
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Generalized k-server: simple lower bound

Theorem (Koutsoupias, Taylor '04). No deterministic
. k . . .
algorithm can be better than 2 k_l—competltlve, even if each metric

M contains only two points.

» for standard k-server, the competitive ratio is O(k)
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Generalized k-server: simple lower bound

Theorem (Koutsoupias, Taylor '04). No deterministic
. k . . .
algorithm can be better than 2 k_l—competltlve, even if each metric

M contains only two points.

Useful definition

> state q = (q1,..., qk): server iis located at q; € M;
» 2K possible states

011 111
Ml @0 1.
010
110
MA@, )
001 101
M@, )
000 100
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Generalized k-server: simple lower bound

Theorem (Koutsoupias, Taylor '04). No deterministic
. k . . .
algorithm can be better than 2 k_l—competltlve, even if each metric

M contains only two points.

Useful definition

> state q = (q1,..., qk): server iis located at q; € M;
» 2K possible states

» q is feasible w.r.t. r*: q; = v} for some i

011 ‘111

010

110

001 101

000 100
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Generalized k-server: simple lower bound

» ALG moves to 2K — 1 different states

> one state remains feasible during the whole sequence

011 111
Ml @0 1.
010
110
R
001 101
SCHED
000 100
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Generalized k-server: simple lower bound

» ALG moves to 2K — 1 different states

> one state remains feasible during the whole sequence

011 ¢111

010 110

001 101

000 100

> red state: unfeasible — OPT cannot stay there

> black state: feasible for all the requests so far
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Generalized k-server: simple lower bound

» ALG moves to 2K — 1 different states

> one state remains feasible during the whole sequence

011 111

010 110

001 101

!

000 100

> red state: unfeasible — OPT cannot stay there
> black state: feasible for all the requests so far

» solution for OPT:
in the beginning, move to (0,0, 1) and stay there
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Known results

Lower bounds

» 2K — 1 by Koutsoupias and Taylor '04

Bansal, Elias, Koumoutsos, Nederlof: Generalized k-Server Problem slide: 13/21



Known results

Lower bounds

» 2K — 1 by Koutsoupias and Taylor '04

Q(k) .
> 22 from weighted k-server [Bansal et al. '17]
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Known results

Lower bounds

» 2K — 1 by Koutsoupias and Taylor '04

Q(k) .
> 22 from weighted k-server [Bansal et al. '17]

Upper bounds

» k=2: O(1) by Sitters and Stougie '06
» k > 2: no upper bound known
» not even for a special class of metrics
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Our results

New algorithms for the uniform metrics

» each M, for i € [K], is uniform, i.e., di(x,y) =1

upper bound lower bound

deterministic: K2k 2k —1
randomized: k3 log k k/ log? k

Bansal, Elias, Koumoutsos, Nederlof: Generalized k-Server Problem slide: 14/21



Our results

New algorithms for the uniform metrics

» each M, for i € [K], is uniform, i.e., di(x,y) =1

upper bound lower bound

deterministic: K2k 2k —1
randomized: k3 log k k/ log? k
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» each M, for i € [K], is uniform, i.e., di(x,y) =1

upper bound lower bound

deterministic: K2k 2k —1
randomized: k3 log k k/ log? k

Case of weighted (or scaled) uniform metrics

each M is a scaled uniform metric, i.e., di(x,y) =w;
02" 3—competitive algorithm
extension of algorithm by Fiat and Ricklin '94

>
>
>
> tight result: LB of 22Q(k) [Bansal et al. '17]
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Our results

New algorithms for the uniform metrics

di(x,y) =1

lower bound

» each My, for 1 € [k], is uniform, i.e.,
§ upper bound
2| deterministic: K2k

randomized: k3 log k

ok 1
k/ log? k

Case of weighted (or scaled) uniform metrics

» each M, is a scaled uniform metric, i.e., di(x,y) =w;

» 02" 3—competitive algorithm

> extension of algorithm by Fiat and Ricklin '94
> tight result: LB of 22Q(k) [Bansal et al. '17]
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Deterministic algorithm for uniform metrics

» ALG works in phases
» in each phase: maintains set F of feasible states

> always moves to some q € F
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Deterministic algorithm for uniform metrics

» ALG works in phases
» in each phase: maintains set F of feasible states

> always moves to some q € F

Beginning of the phase: Example: M| =2 Vi
> set F=Mj; x My X - x My

(all possible states) 011 111
010 110

001 101
000 100
ecF F| = 2%

o F
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Deterministic algorithm for uniform metrics

» ALG works in phases
» in each phase: maintains set F of feasible states

> always moves to some q € F

Beginning of the phase: Example: [M;|=2Vi
> set F=Mj; x My X - x My
: 011 111
(all possible states)
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Bounding the length of the phase

Lemma. During any phase, F = () after 2¥ moves by ALG.

> even if [My|> 2
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Bounding the length of the phase

Lemma. During any phase, F = () after 2¥ moves by ALG.

> even if [My|> 2
» proof using polynomial method

» assume M; ={1,2,...,n} for each i
> we define a feasibility polynomial of 2k variables
> state q = (q1, ..., qx)
» request vt = (r],..., T})
k
plq.m) =] J(ai — )
i=1

slide: 16/21
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Bounding the length of the phase

Lemma. During any phase, F = () after 2¥ moves by ALG.

> even if [My|> 2
» proof using polynomial method

> assume M; ={1,2,..., n} for each 1
> we define a feasibility polynomial of 2k variables
> state q = (q1, ..., qx)
» request Tt = (1],..., )
k
plq.m) =] J(ai — )
i=1

» p(q, ) =0 if q is feasible w.r.t. 1, i.e., qi = v} for some i

» p(qg, ") # 0 otherwise
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Bounding the length of the phase

During a fixed phase:

» rl 2yt

» q1. 9% ... q

— requests
¢ — states of the algorithm
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Bounding the length of the phase

During a fixed phase:

» 1l 2, . r! — requests
» q', g% ..., q" — states of the algorithm
» matrix M € R&E Mt t/] :p(qt,rt/)
¢ q¢ ...
t/x 0 0 -~ 0
2 x 0 0 |y
3 )
M = r X 0 S_g)_
: 0
7t X

configurations
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Bounding the length of the phase

During a fixed phase:

» 1l 2, . r! — requests
» q', g% ..., q" — states of the algorithm
» matrix M € R®<E M, t'] = p(qt,rt/)
a q* 4 ... ¢
t/x 0 0 -~ 0
T’z . X O O 9
Mo 1 % 0|8 to server request rt:
_ g » remove from F all states
:e >O< unfeasible w.r.t. vt
T‘ . . . .
configurations > move to some q'*t € F
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Bounding the length of the phase

During a fixed phase:

» 1l 2, . r! — requests

» q', g% ..., q" — states of the algorithm

» matrix M € R4 Mt t'] = p(qt, )

@@ P
M /x 0

| . X
to server request rt:

» remove from F all states

unfeasible w.r.t. vt

X o o

X o o o o
requests

canfiotratione t+1
configurations > move to some ( eF

» M has zeros above the diagonal
» ALG always moves to some q**1 € F
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Bounding the length of the phase

During a fixed phase:

» 1l 2, . r! — requests

» q', g% ..., q" — states of the algorithm

» matrix M € R4 Mt t'] = p(qt, )

@@ P
M /x 0

| . X
to server request rt:

» remove from F all states

unfeasible w.r.t. vt

X o o

X o o o o
requests

S .
configurations > move to some q**' € F
» M has zeros above the diagonal

» M non-zero entries in the diagonal
» w.l.o.g. each request forces ALG to move
slide: 17/21
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Bounding the length of the phase

During a fixed phase:

» 1l 2, . r! — requests

» q', g% ..., q" — states of the algorithm
» matrix M € R4 Mt t'] = p(qt, )
q' ¢*> ¢* ... ¢
™t /x 0
. x

X o o

to server request rt:
» remove from F all states
unfeasible w.r.t. vt

X o o o o
requests

canfiotratione t+1
configurations > move to some ( eF

» M has zeros above the diagonal

» M non-zero entries in the diagonal = M has full rank
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Bounding the length of the phase

Crucial claim:

» Rank of M is at most 2k.
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Bounding the length of the phase

Crucial claim:

» Rank of M is at most 2k.

Proof:

» we factorize M as M = AB

» where rank of both A and B is at most 2¥
k

p(q.7r) = H(qi —71i) contains 2% monomials

i=1

» M has full rank = length of the phase is at most 2*
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End of the proof

Cost of ALG per phase

» ALG moves at most 2¥ times, each move costs at most k
» cost(ALG) < k2K

Cost of OPT per phase

» F =0 at the end of each phase
» no state can serve all requests of the phase

» cost(OPT) >1

Competitive ratio

cost(ALG)

v ok
cost(OPT) k

N
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Randomized algorithm

Naive algorithm

> F: the set of feasible states in the current phase
» move to q € F chosen uniformly at random

» logn factor in the competitive ratio
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Randomized algorithm

Naive algorithm

> F: the set of feasible states in the current phase
» move to q € F chosen uniformly at random

» logn factor in the competitive ratio

We need more structure

> we reprezent F as a collection of subspaces of feasible states
> this helps to guide the alogrithm’s decisions

» random choice is done over subspaces instead of states
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Concluding remarks

upper bound lower bound

uniform (deterministic): K2k 2k —1
uniform (randomized): k3 logk k/log® k
weighted uniform: 220 020

» no upper bounds known for other metrics whenever k > 2
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Concluding remarks

upper bound lower bound

uniform (deterministic): K2k 2k —1
uniform (randomized): k3 logk k/log® k

weighted uniform: 220 020

» no upper bounds known for other metrics whenever k > 2
> e.g. line metric

Small announcement

» | am graduating this year and | am looking for a postdoc
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