
Competitive Algorithms for Generalized
k-Server in Uniform Metrics

Nikhil Bansal, Marek Eliá², Grigorios Koumoutsos,
Jesper Nederlof

TU Eindhoven

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 1/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I one of the central problems in Online Optimization

I studied intensively for several decades

I its study contributed many techniques to Online Algorithms

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 2/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

k = 2

σ = (?, ?, ?, ?, . . .)

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

k = 2

σ = (4, ?, ?, ?, . . .)

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

k = 2

σ = (4, ?, ?, ?, . . .)

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

k = 2

σ = (4, ?, ?, ?, . . .)

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

k = 2

σ = (4, 1, ?, ?, . . .)

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

k = 2

σ = (4, 1, ?, ?, . . .)

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

σ = (4, 1, ?, ?, . . .)

k = 2

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

I k servers in given metric space

I sequence of requests received online

I target: minimize the distance travelled by the servers

1

2

3

4

5

6

σ = (4, 1, ?, ?, . . .)

k = 2

I Competitive ratio: ALG
OPT

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 3/21

The k-server problem [Manasse, McGeoch, Sleator '90]

Competitive ratio for k-server problem:

upper bound lower bound

deterministic: 2k− 1 k

randomized: log6 k logk
log logk

Natural variants not yet understood:

I e.g. weighted k-server, CNN, generalized k-server

I existing proofs for k-server do not extend

I several successful k-server algorithms not competitive

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 4/21

The k-server problem [Manasse, McGeoch, Sleator '90]

Competitive ratio for k-server problem:

upper bound lower bound

deterministic: 2k− 1 k

randomized: log6 k logk
log logk

Natural variants not yet understood:

I e.g. weighted k-server, CNN, generalized k-server

I existing proofs for k-server do not extend

I several successful k-server algorithms not competitive

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 4/21

Example 1: weighted k-server [Fiat, Ricklin '94]

I servers have weights: w1,w2, . . . ,wk
I target: minimize the weighted distance travelled

I if server i moves by distance D, we pay D ·wi

1 2 30

w

w

= 1

= 100

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 5/21

Example 1: weighted k-server [Fiat, Ricklin '94]

I servers have weights: w1,w2, . . . ,wk
I target: minimize the weighted distance travelled

I if server i moves by distance D, we pay D ·wi

1 2 30

1100

w

w

= 1

= 100

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 5/21

Example 1: weighted k-server [Fiat, Ricklin '94]

I servers have weights: w1,w2, . . . ,wk
I target: minimize the weighted distance travelled

I if server i moves by distance D, we pay D ·wi

1 2 30

w

w

= 1

= 100

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 5/21

Example 1: weighted k-server [Fiat, Ricklin '94]

I servers have weights: w1,w2, . . . ,wk
I target: minimize the weighted distance travelled

I if server i moves by distance D, we pay D ·wi

1 2 30

w

w

= 1

= 100

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 5/21

Example 1: weighted k-server [Fiat, Ricklin '94]

I servers have weights: w1,w2, . . . ,wk
I target: minimize the weighted distance travelled

I if server i moves by distance D, we pay D ·wi

1 2 30

w

w

= 1

= 100

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 5/21

Example 1: weighted k-server [Fiat, Ricklin '94]

I servers have weights: w1,w2, . . . ,wk
I target: minimize the weighted distance travelled

I if server i moves by distance D, we pay D ·wi

1 2 30

w

w

= 1

= 100

I 2 servers in a line: already non-trivial
no memoryless algorithm competitive [Chrobak, Sgall '04]

I for standard k-server, harmonic algorithm works

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 5/21

Example 1: weighted k-server [Fiat, Ricklin '94]

Known results

I upper bounds only for special cases
I for uniform metrics by Fiat and Ricklin '94
I for k = 2 by Sitters and Stougie '06

I lower bound: 22
Ω(k)

by Bansal et al. FOCS'17

upper bound lower bound

uniform metrics: 22
O(k)

22
Ω(k)

k = 2: O(1) Ω(1)

k > 2: ?? 22
Ω(k)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 6/21

Example 2: CNN problem [Koutsoupias, Taylor '04]

I k servers, each moving in its own line metric

I for k = 2: moving live-broadcast vehicles in a city

I target: minimize the distance travelled by the servers

1st 3rd

2nd

3rd

Avenues

Streets

ALG:
requests:

(2,1)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 7/21

Example 2: CNN problem [Koutsoupias, Taylor '04]

I k servers, each moving in its own line metric

I for k = 2: moving live-broadcast vehicles in a city

I target: minimize the distance travelled by the servers

1st 3rd

2nd

3rd

Avenues

Streets

ALG:
requests:

(2,1)
(1, 2)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 7/21

Example 2: CNN problem [Koutsoupias, Taylor '04]

I k servers, each moving in its own line metric

I for k = 2: moving live-broadcast vehicles in a city

I target: minimize the distance travelled by the servers

3rd

2nd

3rd

Avenues

Streets

ALG:
requests:

(2,1)
(1, 2)
(1, 1)

2nd

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 7/21

Example 2: CNN problem [Koutsoupias, Taylor '04]

Known results:

I upper bound for k = 2 by Sitters and Stougie '06

I doubly-exponential lower bound by Bansal et al. '17

upper bound lower bound

k = 2: O(1) Ω(1)

k > 2: ?? 22
Ω(k)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 8/21

The generalized k-server problem [Koutsoupias, Taylor '04]

I each server moves in its own metric: (M1,d1), . . . , (Mk,dk)

I at time t: we receive request (rt1, . . . , r
t
k), r

t
i ∈Mi

I ALG has to select some server i and move it to rti .

I target: minimize the distance travelled by the servers

M1

M2

M3

1
2 3

a

b

c

d

α β

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 9/21

The generalized k-server problem [Koutsoupias, Taylor '04]

I each server moves in its own metric: (M1,d1), . . . , (Mk,dk)

I at time t: we receive request (rt1, . . . , r
t
k), r

t
i ∈Mi

I ALG has to select some server i and move it to rti .

I target: minimize the distance travelled by the servers

M1

M2

M3

1
2 3

a

b

c

d

α β

rt = (1, c,α)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 9/21

The generalized k-server problem [Koutsoupias, Taylor '04]

I each server moves in its own metric: (M1,d1), . . . , (Mk,dk)

I at time t: we receive request (rt1, . . . , r
t
k), r

t
i ∈Mi

I ALG has to select some server i and move it to rti .

I target: minimize the distance travelled by the servers

M1

M2

M3

1
2 3

a

b

c

d

α β

rt = (1, c,α)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 9/21

The generalized k-server problem [Koutsoupias, Taylor '04]

I each server moves in its own metric: (M1,d1), . . . , (Mk,dk)

I at time t: we receive request (rt1, . . . , r
t
k), r

t
i ∈Mi

I ALG has to select some server i and move it to rti .

I target: minimize the distance travelled by the servers

M1

M2

M3

1
2 3

a

b

c

d

α β

rt = (1, c,α)

cost: d2(a, c)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 9/21

Generalized k-server: special cases

The k-server problem

I all metrics are the same: M1 = · · · =Mk

I each request has all coordinates equal: rt = (σt, . . . ,σt)
I σt is then the request for the k-server instance

The weighted k-server problem

I for each i, Mi = wiM (a scaled copy of some �xed M)

I each request has all coordinates equal: rt = (σt, . . . ,σt)

The CNN problem

I each Mi is a real line

1st 3rd

2nd

3rd

Avenues

Streets

ALG:
requests:

(2,1)
(1, 2)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 10/21

Generalized k-server: special cases

The k-server problem

I all metrics are the same: M1 = · · · =Mk

I each request has all coordinates equal: rt = (σt, . . . ,σt)
I σt is then the request for the k-server instance

The weighted k-server problem

I for each i, Mi = wiM (a scaled copy of some �xed M)

I each request has all coordinates equal: rt = (σt, . . . ,σt)

The CNN problem

I each Mi is a real line

1st 3rd

2nd

3rd

Avenues

Streets

ALG:
requests:

(2,1)
(1, 2)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 10/21

Generalized k-server: special cases

The k-server problem

I all metrics are the same: M1 = · · · =Mk

I each request has all coordinates equal: rt = (σt, . . . ,σt)
I σt is then the request for the k-server instance

The weighted k-server problem

I for each i, Mi = wiM (a scaled copy of some �xed M)

I each request has all coordinates equal: rt = (σt, . . . ,σt)

The CNN problem

I each Mi is a real line

1st 3rd

2nd

3rd

Avenues

Streets

ALG:
requests:

(2,1)
(1, 2)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 10/21

Generalized k-server: special cases

The k-server problem

I all metrics are the same: M1 = · · · =Mk

I each request has all coordinates equal: rt = (σt, . . . ,σt)
I σt is then the request for the k-server instance

The weighted k-server problem

I for each i, Mi = wiM (a scaled copy of some �xed M)

I each request has all coordinates equal: rt = (σt, . . . ,σt)

The CNN problem

I each Mi is a real line

3rd

2nd

3rd

Avenues

Streets

ALG:
requests:

(2,1)
(1, 2)
(1, 1)

2nd

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 10/21

Generalized k-server: simple lower bound

Theorem (Koutsoupias, Taylor '04). No deterministic

algorithm can be better than 2k−1
k -competitive, even if each metric

Mi contains only two points.

I for standard k-server, the competitive ratio is O(k)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 11/21

Generalized k-server: simple lower bound

Theorem (Koutsoupias, Taylor '04). No deterministic

algorithm can be better than 2k−1
k -competitive, even if each metric

Mi contains only two points.

I for standard k-server, the competitive ratio is O(k)

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 11/21

Generalized k-server: simple lower bound

Theorem (Koutsoupias, Taylor '04). No deterministic

algorithm can be better than 2k−1
k -competitive, even if each metric

Mi contains only two points.

Useful de�nition

I state q = (q1, . . . ,qk): server i is located at qi ∈Mi

I 2k possible states

I q is feasible w.r.t. rt: qi = r
t
i for some i

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 11/21

Generalized k-server: simple lower bound

Theorem (Koutsoupias, Taylor '04). No deterministic

algorithm can be better than 2k−1
k -competitive, even if each metric

Mi contains only two points.

Useful de�nition

I state q = (q1, . . . ,qk): server i is located at qi ∈Mi

I 2k possible states

I q is feasible w.r.t. rt: qi = r
t
i for some i

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 11/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Generalized k-server: simple lower bound

I ALG moves to 2k− 1 di�erent states

I one state remains feasible during the whole sequence

M3 0 1

M2 0 1

M1 0 1

001 101

100

110

111011

010

000

I red state: unfeasible � OPT cannot stay there

I black state: feasible for all the requests so far

I solution for OPT:

in the beginning, move to (0, 0, 1) and stay there

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 12/21

Known results

Lower bounds

I 2k− 1 by Koutsoupias and Taylor '04

I 22
Ω(k)

from weighted k-server [Bansal et al. '17]

Upper bounds

I k = 2: O(1) by Sitters and Stougie '06

I k > 2: no upper bound known
I not even for a special class of metrics

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 13/21

Known results

Lower bounds

I 2k− 1 by Koutsoupias and Taylor '04

I 22
Ω(k)

from weighted k-server [Bansal et al. '17]

Upper bounds

I k = 2: O(1) by Sitters and Stougie '06

I k > 2: no upper bound known
I not even for a special class of metrics

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 13/21

Known results

Lower bounds

I 2k− 1 by Koutsoupias and Taylor '04

I 22
Ω(k)

from weighted k-server [Bansal et al. '17]

Upper bounds

I k = 2: O(1) by Sitters and Stougie '06

I k > 2: no upper bound known
I not even for a special class of metrics

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 13/21

Our results

New algorithms for the uniform metrics

I each Mi, for i ∈ [k], is uniform, i.e., di(x,y) = 1

upper bound lower bound

deterministic: k2k 2k − 1

randomized: k3 log k k/ log2 k

Case of weighted (or scaled) uniform metrics

I each Mi is a scaled uniform metric, i.e., di(x,y) = wi

I 22
k+3

-competitive algorithm

I extension of algorithm by Fiat and Ricklin '94

I tight result: LB of 22
Ω(k)

[Bansal et al. '17]

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 14/21

Our results

New algorithms for the uniform metrics

I each Mi, for i ∈ [k], is uniform, i.e., di(x,y) = 1

upper bound lower bound

deterministic: k2k 2k − 1

randomized: k3 log k k/ log2 k

Case of weighted (or scaled) uniform metrics

I each Mi is a scaled uniform metric, i.e., di(x,y) = wi

I 22
k+3

-competitive algorithm

I extension of algorithm by Fiat and Ricklin '94

I tight result: LB of 22
Ω(k)

[Bansal et al. '17]

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 14/21

Our results

New algorithms for the uniform metrics

I each Mi, for i ∈ [k], is uniform, i.e., di(x,y) = 1

upper bound lower bound

deterministic: k2k 2k − 1

randomized: k3 log k k/ log2 k

Case of weighted (or scaled) uniform metrics

I each Mi is a scaled uniform metric, i.e., di(x,y) = wi

I 22
k+3

-competitive algorithm

I extension of algorithm by Fiat and Ricklin '94

I tight result: LB of 22
Ω(k)

[Bansal et al. '17]

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 14/21

Our results

New algorithms for the uniform metrics

I each Mi, for i ∈ [k], is uniform, i.e., di(x,y) = 1
T
h
is

ta
lk upper bound lower bound

deterministic: k2k 2k − 1

randomized: k3 log k k/ log2 k

Case of weighted (or scaled) uniform metrics

I each Mi is a scaled uniform metric, i.e., di(x,y) = wi

I 22
k+3

-competitive algorithm

I extension of algorithm by Fiat and Ricklin '94

I tight result: LB of 22
Ω(k)

[Bansal et al. '17]

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 14/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀iBeginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 2k

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 2k − 1

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 2k − 1

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 2k − 2

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 1

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 0

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 2k

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Deterministic algorithm for uniform metrics

I ALG works in phases

I in each phase: maintains set F of feasible states

I always moves to some q ∈ F

Example: |Mi| = 2 ∀i

∈ F

/∈ F

|F| = 2k − 1

001 101

100

110

111011

010

000

Beginning of the phase:

I set F =M1 ×M2 × · · · ×Mk

(all possible states)

To server request rt:

I remove from F all states

unfeasible w.r.t. rt

I move to an arbitrary q ∈ F

I once F = ∅, start a new phase

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 15/21

Bounding the length of the phase

Lemma. During any phase, F = ∅ after 2k moves by ALG.

I even if |Mi|� 2

I proof using polynomial method

I assume Mi = {1, 2, . . . ,n} for each i

I we de�ne a feasibility polynomial of 2k variables
I state q = (q1, . . . ,qk)
I request rt = (rt

1
, . . . , rtk)

p(q, rt) =

k∏
i=1

(qi − rti)

I p(q, rt) = 0 if q is feasible w.r.t. rt, i.e., qi = r
t
i for some i

I p(q, rt) 6= 0 otherwise

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 16/21

Bounding the length of the phase

Lemma. During any phase, F = ∅ after 2k moves by ALG.

I even if |Mi|� 2

I proof using polynomial method

I assume Mi = {1, 2, . . . ,n} for each i

I we de�ne a feasibility polynomial of 2k variables
I state q = (q1, . . . ,qk)
I request rt = (rt

1
, . . . , rtk)

p(q, rt) =

k∏
i=1

(qi − rti)

I p(q, rt) = 0 if q is feasible w.r.t. rt, i.e., qi = r
t
i for some i

I p(q, rt) 6= 0 otherwise

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 16/21

Bounding the length of the phase

Lemma. During any phase, F = ∅ after 2k moves by ALG.

I even if |Mi|� 2

I proof using polynomial method

I assume Mi = {1, 2, . . . ,n} for each i

I we de�ne a feasibility polynomial of 2k variables
I state q = (q1, . . . ,qk)
I request rt = (rt

1
, . . . , rtk)

p(q, rt) =

k∏
i=1

(qi − rti)

I p(q, rt) = 0 if q is feasible w.r.t. rt, i.e., qi = r
t
i for some i

I p(q, rt) 6= 0 otherwise

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 16/21

Bounding the length of the phase

Lemma. During any phase, F = ∅ after 2k moves by ALG.

I even if |Mi|� 2

I proof using polynomial method

I assume Mi = {1, 2, . . . ,n} for each i

I we de�ne a feasibility polynomial of 2k variables
I state q = (q1, . . . ,qk)
I request rt = (rt

1
, . . . , rtk)

p(q, rt) =

k∏
i=1

(qi − rti)

I p(q, rt) = 0 if q is feasible w.r.t. rt, i.e., qi = r
t
i for some i

I p(q, rt) 6= 0 otherwise

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 16/21

Bounding the length of the phase

During a �xed phase:

I r1, r2, . . . , r` � requests
I q1,q2, . . . ,q` � states of the algorithm

I matrix M ∈ R`×`: M[t, t ′] = p(qt, rt
′
)


× 0 0 · · · 0
. × 0 · · · 0

. . ×
. . . 0

. . .
. . . 0

. . . . ×


configurations

re
q

u
es

ts

M =

q1

r1
q2 q3 q`. . .

r2

r3

...

r`

to server request rt:
I remove from F all states

unfeasible w.r.t. rt

I move to some qt+1 ∈ F

I M has zeros above the diagonal

I M non-zero entries in the diagonal

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 17/21

Bounding the length of the phase

During a �xed phase:

I r1, r2, . . . , r` � requests
I q1,q2, . . . ,q` � states of the algorithm
I matrix M ∈ R`×`: M[t, t ′] = p(qt, rt

′
)


× 0 0 · · · 0
. × 0 · · · 0

. . ×
. . . 0

. . .
. . . 0

. . . . ×


configurations

re
q

u
es

ts

M =

q1

r1
q2 q3 q`. . .

r2

r3

...

r`

to server request rt:
I remove from F all states

unfeasible w.r.t. rt

I move to some qt+1 ∈ F

I M has zeros above the diagonal

I M non-zero entries in the diagonal

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 17/21

Bounding the length of the phase

During a �xed phase:

I r1, r2, . . . , r` � requests
I q1,q2, . . . ,q` � states of the algorithm
I matrix M ∈ R`×`: M[t, t ′] = p(qt, rt

′
)


× 0 0 · · · 0
. × 0 · · · 0

. . ×
. . . 0

. . .
. . . 0

. . . . ×


configurations

re
q

u
es

ts

M =

q1

r1
q2 q3 q`. . .

r2

r3

...

r`

to server request rt:
I remove from F all states

unfeasible w.r.t. rt

I move to some qt+1 ∈ F

I M has zeros above the diagonal

I M non-zero entries in the diagonal

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 17/21

Bounding the length of the phase

During a �xed phase:

I r1, r2, . . . , r` � requests
I q1,q2, . . . ,q` � states of the algorithm
I matrix M ∈ R`×`: M[t, t ′] = p(qt, rt

′
)


× 0 0 · · · 0
. × 0 · · · 0

. . ×
. . . 0

. . .
. . . 0

. . . . ×


configurations

re
q

u
es

ts

M =

q1

r1
q2 q3 q`. . .

r2

r3

...

r`

to server request rt:
I remove from F all states

unfeasible w.r.t. rt

I move to some qt+1 ∈ F

I M has zeros above the diagonal
I ALG always moves to some qt+1 ∈ F

I M non-zero entries in the diagonal

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 17/21

Bounding the length of the phase

During a �xed phase:

I r1, r2, . . . , r` � requests
I q1,q2, . . . ,q` � states of the algorithm
I matrix M ∈ R`×`: M[t, t ′] = p(qt, rt

′
)


× 0 0 · · · 0
. × 0 · · · 0

. . ×
. . . 0

. . .
. . . 0

. . . . ×


configurations

re
q

u
es

ts

M =

q1

r1
q2 q3 q`. . .

r2

r3

...

r`

to server request rt:
I remove from F all states

unfeasible w.r.t. rt

I move to some qt+1 ∈ F

I M has zeros above the diagonal

I M non-zero entries in the diagonal
I w.l.o.g. each request forces ALG to move

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 17/21

Bounding the length of the phase

During a �xed phase:

I r1, r2, . . . , r` � requests
I q1,q2, . . . ,q` � states of the algorithm
I matrix M ∈ R`×`: M[t, t ′] = p(qt, rt

′
)


× 0 0 · · · 0
. × 0 · · · 0

. . ×
. . . 0

. . .
. . . 0

. . . . ×


configurations

re
q

u
es

ts

M =

q1

r1
q2 q3 q`. . .

r2

r3

...

r`

to server request rt:
I remove from F all states

unfeasible w.r.t. rt

I move to some qt+1 ∈ F

I M has zeros above the diagonal

I M non-zero entries in the diagonal ⇒ M has full rank

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 17/21

Bounding the length of the phase

Crucial claim:

I Rank of M is at most 2k.

Proof:

I we factorize M as M = AB
I where rank of both A and B is at most 2k

p(q, r) =

k∏
i=1

(qi − ri) contains 2k monomials

I M has full rank ⇒ length of the phase is at most 2k

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 18/21

Bounding the length of the phase

Crucial claim:

I Rank of M is at most 2k.

Proof:

I we factorize M as M = AB
I where rank of both A and B is at most 2k

p(q, r) =

k∏
i=1

(qi − ri) contains 2k monomials

I M has full rank ⇒ length of the phase is at most 2k

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 18/21

End of the proof

Cost of ALG per phase

I ALG moves at most 2k times, each move costs at most k

I cost(ALG) 6 k2k

Cost of OPT per phase

I F = ∅ at the end of each phase
I no state can serve all requests of the phase

I cost(OPT) > 1

Competitive ratio

cost(ALG)

cost(OPT)
6 k2k

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 19/21

Randomized algorithm

Naïve algorithm

I F: the set of feasible states in the current phase

I move to q ∈ F chosen uniformly at random

I logn factor in the competitive ratio

We need more structure

I we reprezent F as a collection of subspaces of feasible states

I this helps to guide the alogrithm's decisions

I random choice is done over subspaces instead of states

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 20/21

Randomized algorithm

Naïve algorithm

I F: the set of feasible states in the current phase

I move to q ∈ F chosen uniformly at random

I logn factor in the competitive ratio

We need more structure

I we reprezent F as a collection of subspaces of feasible states

I this helps to guide the alogrithm's decisions

I random choice is done over subspaces instead of states

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 20/21

Concluding remarks

upper bound lower bound

uniform (deterministic): k2k 2k − 1

uniform (randomized): k3 log k k/ log2 k

weighted uniform: 22
O(k)

22
Ω(k)

I no upper bounds known for other metrics whenever k > 2

I e.g. line metric

Small announcement

I I am graduating this year and I am looking for a postdoc

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 21/21

Concluding remarks

upper bound lower bound

uniform (deterministic): k2k 2k − 1

uniform (randomized): k3 log k k/ log2 k

weighted uniform: 22
O(k)

22
Ω(k)

I no upper bounds known for other metrics whenever k > 2
I e.g. line metric

Small announcement

I I am graduating this year and I am looking for a postdoc

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 21/21

Concluding remarks

upper bound lower bound

uniform (deterministic): k2k 2k − 1

uniform (randomized): k3 log k k/ log2 k

weighted uniform: 22
O(k)

22
Ω(k)

I no upper bounds known for other metrics whenever k > 2
I e.g. line metric

Small announcement

I I am graduating this year and I am looking for a postdoc

Bansal, Eliá², Koumoutsos, Nederlof: Generalized k-Server Problem slide: 21/21

