
The (h, k)-Server Problem on Bounded Depth Trees∗

Nikhil Bansal† Marek Eliáš† Lukasz Jeż‡ Grigorios Koumoutsos†

Abstract
We study the k-server problem in the resource augmentation
setting i.e., when the performance of the online algorithm
with k servers is compared to the offline optimal solution
with h ≤ k servers. The problem is very poorly understood
beyond uniform metrics. For this special case, the classic
k-server algorithms are roughly (1 + 1/ε)-competitive when
k = (1 + ε)h, for any ε > 0. Surprisingly however, no o(h)-
competitive algorithm is known even for HSTs of depth 2
and even when k/h is arbitrarily large.

We obtain several new results for the problem. First
we show that the known k-server algorithms do not work
even on very simple metrics. In particular, the Double
Coverage algorithm has competitive ratio Ω(h) irrespective
of the value of k, even for depth-2 HSTs. Similarly the Work
Function Algorithm, that is believed to be optimal for all
metric spaces when k = h, has competitive ratio Ω(h) on
depth-3 HSTs even if k = 2h. Our main result is a new
algorithm that is O(1)-competitive for constant depth trees,
whenever k = (1 + ε)h for any ε > 0. Finally, we give a
general lower bound that any deterministic online algorithm
has competitive ratio at least 2.4 even for depth-2 HSTs
and when k/h is arbitrarily large. This gives a surprising
qualitative separation between uniform metrics and depth-2
HSTs for the (h, k)-server problem, and gives the strongest
known lower bound for the problem on general metrics.

1 Introduction

The classic k-server problem, introduced by Manasse
et al. [10], is a broad generalization of various online
problems and is defined as follows. There are k servers
that reside on some points of a given metric space. At
each step, a request arrives at some point of the metric
space and must be served by moving some server to
that point. The goal is to minimize the total distance
traveled by the servers.

In this paper, we study the resource augmentation
setting of the problem, also known as the “weak ad-
versary” model [8], where the online algorithm has k
servers, but its performance is compared to a “weak”
offline optimum with h ≤ k servers. We will refer
to this as the (h, k)-server problem. Our motivation
is twofold. Typically, the resource augmentation set-
ting gives a much more refined view of the problem

∗This work was supported by NWO grant 639.022.211,

ERC consolidator grant 617951, and NCN grant DEC-

2013/09/B/ST6/01538. It was carried out while L. Jeż was a
postdoc at TU/e.
†TU Eindhoven, Netherlands.

{n.bansal,m.elias,g.koumoutsos}@tue.nl
‡University of Wroc law, Poland. lje@cs.uni.wroc.pl

and allows one to bypass overly pessimistic worst case
bounds, see e.g. [7]. Second, as we discuss below, the
(h, k)-server problem is much less understood than the
k-server problem and seems much more intriguing.

1.1 Previous work The k-server problem has been
extensively studied; here we will focus only on determin-
istic algorithms. It is well-known that no algorithm can
be better than k-competitive for any metric space on
more than k points [10]. In their breakthrough result,
Koutsoupias and Papadimitriou [9] showed that the
Work Function Algorithm (WFA) is (2k−1)-competitive
in any metric space. For special metrics such as the uni-
form metrics1, the line, and trees, tight k-competitive
algorithms are known (cf. [4]). It is widely believed
that a k-competitive algorithm exists for every metric
space (the celebrated k-server conjecture), and it is also
plausible that the WFA achieves this guarantee. Quali-
tatively, this means that general metrics are believed to
be no harder than the simplest possible case of uniform
metrics.

The (h, k)-server problem. Much less is known
for the (h, k)-server problem. In their seminal pa-
per [11], Sleator and Tarjan gave several (k/(k−h+1))-
competitive algorithms for the uniform metrics and also
showed that this is the best possible ratio. This bound
was later extended to the weighted star metric (weighted
paging) [12]. Note that this guarantee equals k for
k = h (the usual k-server setting), and tends to 1 as
k/h approaches infinity. In particular, for k = 2h, this
is smaller than 2.

It might seem natural to conjecture that, analo-
gously to the k-server case, general metrics are no harder
than the uniform metrics, and hence that k/(k− h+ 1)
is the right bound for the (h, k)-server problem in all
metrics. However, surprisingly, Bar-Noy and Schieber
(cf. [4, p. 175]) showed this to be false: In the line met-
ric, for h = 2, no deterministic algorithm can be better
than 2-competitive, regardless of the value of k. This is
the best known lower bound for the general (h, k)-server
problem.

On the other hand, the best known upper bound is

1The k-server problem in uniform metrics is equivalent to the
paging problem.

2h, even when k/h→∞. In particular, Koutsoupias [8]
showed that the WFA with k-servers is (about) 2h-
competitive against an offline optimum with h servers.
Note that one way to achieve a guarantee of 2h − 1 is
simply to disable the k− h extra online servers and use
WFA with h servers only. The interesting thing about
the result of [8] is that the online algorithm does not
know h and is 2h-competitive simultaneously for every
h ≤ k. But, even if we ignore this issue of whether the
online algorithm knows h or not, no guarantee better
than h is known, even for very special metrics such as
depth-2 HSTs or the line, and even when k/h→∞.

1.2 Our Results Motivated by the huge gap be-
tween the known lower and upper bounds even for very
simple metrics, we consider bounded-depth HSTs (de-
fined formally in Section 1.3).

We first show very strong lower bounds on all the
previously known algorithms (beyond uniform metrics),
specifically the Double Coverage (DC) algorithm of
Chrobak et al. [5, 6] and the WFA. This is perhaps
surprising because, for the k-server problem, DC is
optimal in trees and WFA is believed to be optimal in
all metrics.

Theorem 1.1. The competitive ratio of DC in depth-2
HSTs is Ω(h), even when k/h→∞.

In particular, DC is unable to use the extra servers
in a useful way. A similar lower bound was recently
shown for the line by a superset of the authors [1].

For the WFA, we present the following lower bound.

Theorem 1.2. The competitive ratio of the WFA is at
least h+ 1/3 in a depth-3 HST for k = 2h.

Surprisingly, the lower bound here is strictly larger
than h! Recall that the WFA is believed to be h-
competitive for k = h. Although the lower bound in-
stance is quite simple, the analysis is rather involved as
we need to consider how the various work function val-
ues evolve over time. The lower bound in Theorem 1.2
can also be extended to the line metric. Interestingly, it
exactly matches the upper bound (h+1)OPTh−OPTk
implied by results of [8, 3] for the WFA in the line. We
describe the details in Appendix B.

Our main result is the first o(h)-competitive algo-
rithm for depth-d trees with the following guarantee.

Theorem 1.3. There is an algorithm that is Od(1)-
competitive on any depth-d tree, whenever k = δh for
δ > 1. More precisely, its competitive ratio for is

O(d · 2d+1) for δ ∈ [2d,+∞), and O(d · (δ1/d

δ1/d−1)d+1)

for δ ∈ (1, 2d). If δ is very small, i.e. δ = 1 + ε for
0 < ε ≤ 1, the later bound equals to O(d · (2d/ε)d+1).

The algorithm is designed to overcome the draw-
backs of DC and WFA, and can be viewed as a more
aggressive and cost-sensitive version of DC. It moves
the servers more aggressively at non-uniform speeds to-
wards the region of the current request, giving a higher
speed to a server located in a region containing many
servers. It does not require the knowledge of h, and is
simultaneously competitive against all h strictly smaller
than k.

Finally, we give an improved general lower bound.
Bar-Noy and Schieber (cf. [4, p. 175]) showed that there
is no better than 2-competitive algorithm for the (h, k)-
server problem in general metrics, by constructing their
lower bound in the line metric. Our next result shows
that even a 2-competitive algorithm is not possible. In
particular, we present a construction in a depth-2 HST
showing that no 2.4-competitive algorithm is possible.

Theorem 1.4. There is no 2.4-competitive determinis-
tic algorithm for general metrics, even when k/h→∞,
provided that h is larger than some constant independent
of k.

This shows that depth-2 HSTs are qualitatively
quite different from depth-1 HSTs (same as uniform
metrics) which allow a ratio k/(k−h+ 1). We have not
tried to optimize the constant 2.4 above, but computer
experiments suggest that the bound can be improved to
about 2.88.

1.3 Notation and Preliminaries In the (h, k)-
setting, we define the competitive ratio as follows. An
online algorithm ALG is R-competitive in metric M , if
ALGk(I) ≤ R ·OPTh(I)+α holds for any finite request
sequence I of points in M . Here, ALGk(I) denotes the
cost of ALG serving I with k servers, OPTh(I) denotes
the optimal cost to serve I with h servers, and α is a
constant independent of I. An excellent reference on
competitive analysis is [4].

A depth-d tree is an edge-weighted rooted tree with
each leaf at depth exactly d. In the (h, k)-server problem
in a depth-d tree, the requests arrive only at leaves,
and the distance between two leaves is defined as the
distance in the underlying tree. A depth-d HST is
a depth-d tree with the additional property that the
distances decrease geometrically away from the root (see
e.g. Bartal [2]). We will first present our algorithm for
general depth-d trees (without the HST requirement),
and later show how to (easily) extend it to arbitrary
trees with bounded diameter, where requests are also
allowed in the internal nodes.

DC Algorithm for Trees. Our algorithm can be
viewed as a non-uniform version of the DC algorithm

for trees [5, 6], which works as follows. When a request
arrives at a vertex v of the tree, all the servers adjacent
to v move towards it along the edges at the same speed
until one eventually arrives at v. Here, a server s is
adjacent to a point x if there is no other server on the
(unique) path from s to x. If multiple servers are located
at a single point, only one of them is chosen arbitrarily.

Work Function Algorithm. Consider a request
sequence σ = r1, r2, . . . , rm. For each i = 1, . . . ,m,
let wi(A) denote the optimal cost to serve requests
r1, r2, . . . , ri and end up in the configuration A, which
is specified by the set of locations of the servers. The
function wi is called work function. The Work Function
Algorithm (WFA) decides its moves depending on the
values of the work function. Specifically, if the algorithm
is in a configuration A and a request ri /∈ A arrives, it
moves to the configuration X such that ri ∈ X and
wi(X) + d(A,X) is minimized. For more background
on the WFA, see [4].

1.4 Organization In Section 2, we describe the
lower bound for the DC in depth-2 HSTs. The short-
comings of the DC might help the reader to understand
the motivation behind the design of our algorithm for
depth-d trees, which we describe in Section 3. Its ex-
tension to the bounded-diameter trees can be found in
Appendix A.2. In Section 4 we describe the general
lower bound (Theorem 1.4) and the lower bound for the
WFA (Theorem 1.2) for depth-3 HSTs. The extension
of Theorem 1.2 to the line is discussed in Appendix B.

2 Lower Bound for the DC Algorithm on
depth-2 HSTs

We now show a lower bound of Ω(h) on the competitive
ratio of the DC algorithm.

Let T be a depth-2 HST with k + 1 subtrees and
edge lengths chosen as follows. Edges from the root r to
its children have length 1− ε, and edges from the leaves
to their parents length ε for some ε � 1. Let Tu be
a subtree rooted at an internal node u 6= r. A branch
Bu is defined as Tu together with the edge e connecting
Tu to the root. We call Bu empty, if there is no online
server in Tu nor in the interior of e. Since T contains
k + 1 branches, at least one of them is always empty.

The idea behind the lower bound is quite simple.
The adversary moves all its h servers to the leaves of
an empty branch Bu, and keeps requesting those leaves
until DC brings h servers to Tu. Then, another branch
has to become empty, and the adversary moves all its
servers there, starting a new phase. The adversary can
execute an arbitrary number of such phases.

The key observation is that DC is “too slow” when

ε

si

r

u

s1 si−1v

ε
. . .

q

Figure 1: Move of DC during Step i. Servers s1, . . . , si−1
are moving towards u by distance ε and si is moving
down the edge (r, u) by the same distance. While si
is in the interior of (r, u), no server q from some other
branch is adjacent to v because the unique path between
v and q passes through si.

bringing new servers to Tu, and incurs a cost of order
Ω(h2) during each phase, while the adversary only pays
O(h).

Theorem 1.1 (restated). The competitive ratio of
DC in depth-2 HSTs is Ω(h), even when k/h→∞.

Proof. We describe a phase, which can be repeated
arbitrarily many times. The adversary places all its h
servers at different leaves of an empty branch Bu and
does not move until the end of the phase. At each time
during the phase, a request arrives at such a leaf, which
is occupied by some offline server, but contains no online
servers. The phase ends at the moment when the hth
server of DC arrives to Tu.

Let ALG denote the cost of the DC algorithm
and ADV the cost of the adversary during the phase.
Clearly, ADV = 2h in each phase: The adversary moves
its h servers to Tu and does not incur any additional
cost until the end of the phase. However, we claim that
ALG = Ω(h2), no matter where exactly the DC servers
are located when the phase starts. To see that, let us
call Step i the part of the phase when DC has exactly
i − 1 servers in Tu. Clearly, Step 1 consists of only a
single request, which causes DC to bring one server to
the requested leaf. So the cost of DC for Step 1 is at
least 1. To bound the cost in the subsequent steps, we
make the following observation.

Observation 2.1. At the moment when a new server
s enters the subtree Tu, no other DC servers are located
along the edge e = (r, u).

This follows from the construction of DC, which moves
only servers adjacent to the request. At the moment
when s enters the edge e, no other server above s can
be inside e; see Figure 1.

We now focus on Step i for 2 ≤ i ≤ h. There are
already i − 1 servers in Tu, and let si be the next one
which is to arrive to Tu.

Crucially, si moves if and only if all the servers of
DC in the subtree Tu move from the leaves towards
u, like in Figure 1: When the request arrives at v,
si moves by ε and the servers inside Tu pay together
(i− 1)ε. However, such a moment does not occur, until
all servers s1, . . . , si−1 are again at leaves, i.e. they incur
an additional cost (i − 1)ε. To sum up, while si moves
by ε, the servers inside Tu incur cost 2(i− 1)ε.

When Step i starts, the distance of si from u is at
least 1− ε, and therefore si moves by distance ε at least
b 1−εε c times, before it enters Tu. So, during Step i, DC
pays at least⌊

1− ε
ε

⌋
(2(i− 1)ε+ ε) ≥ 1− 2ε

ε
· ε
(
2(i− 1) + 1

)
=

= (1− 2ε)(2i− 1)

By summing over all steps i = 1, . . . , h and choosing
ε ≤ 1/4, we get

ALG ≥ 1 +

h∑
i=2

(1− 2ε)(2i− 1) ≥

h∑
i=1

(1− 2ε)(2i− 1) = (1− 2ε)h2 ≥ h2

2

To conclude the proof, we note that ALG/ADV ≥
(h2/2)/(2h) = h/4 = Ω(h) for all phases. �

3 Algorithm for depth-d trees

In this section we prove Theorem 1.3.
Recall that a depth-d tree is a rooted-tree and

we allow the requests to appear only at the leaves.
However, to simplify the algorithm description, we will
allow the online servers to reside at any node or at any
location on an edge (similar to that in DC). To serve a
request at a leaf v, the algorithm moves all the adjacent
servers slowly towards v, where the speed of each server
coming from a different branch of the tree depends on
the number of the online servers “below” it.

To describe the algorithm formally, we state the
following definitions. For a point x ∈ T (either a node
or a location on some edge), we define Tx as the subtree
consisting of all points below x including x itself, and
we denote kx the number of the online servers inside Tx.
If s is a server located at a point x, we denote Ts = Tx
and ks = kx. We also denote T−x = Tx \{x}, and k−x the
corresponding number of the algorithm’s servers in T−x .
If u is a level-1 node, we call Tu an elementary subtree,
see Figure 2.

v

u

q1

3/6

2/6

1/6
Tu

. . .

Figure 2: A request at v inside of the elementary tree
Tu, and Phase 2 of Algorithm 1. Note that k−q equals
6 in the visualised case. Speed is noted next to each
server moving.

3.1 Algorithm Description Suppose a request ar-
rives at a leaf v that lies in the elementary subtree Tu.
The algorithm proceeds in two phases, depending on
whether there is a server along the path from v to the
root r or not. We set speeds as described in Algorithm 1
below and move the servers towards v either until the
phase ends or the set A of servers adjacent to v changes.
This defines the elementary moves (where A stays un-
changed). Note that if there are some servers in the
path between v and the root r, only the lowest of them
belongs to A. We denote this server q during an ele-
mentary move. Figure 2 shows an elementary subtree
Tu and the progress of Phase 2.

Algorithm 1: Serving request at leaf v in ele-
mentary subtree Tu.

Phase 1: While there is no server along the
path r − v

For each s ∈ Tu: move s at speed 1/ku
For each s ∈ A \ Tu: move s at speed
ks/(k − ku)

Phase 2: While no server reached v; Server
q ∈ A moves down along the path r − v

For server q: move it at speed 1
For each s ∈ A \ {q}: move it at speed ks/k

−
q

We note two properties, the first of which follows
directly from the design of Algorithm 1.

Observation 3.1. No edge e ∈ T contains more than
one server of Algorithm 1 in its interior.

Note that during both the phases, the various
servers move at non-uniform speeds depending on their
respective ks. The following observations about these
speeds will be useful.

Observation 3.2. During Phase 1, the total speed of
servers inside Tu is 1, unless there are no servers inside
Tu. This follows as there are ku servers moving at speed
1/ku. Similarly, the total speed of servers outside Tu (if
there are any) is also 1. This follows as

∑
s∈A\Tu

ks =
k − ku.

Analogously, for Phase 2: the total speed of servers
inside T−q is 1, if there are any. This follows as∑
s∈A\{q} ks = k−q .

The intuition behind the algorithm is the following.
Recall that the problem with DC is that it brings the
outside servers too slowly into Tu when requests start
arriving there. Therefore, our algorithm changes the
speeds of the servers adjacent to v to make the algorithm
more aggressive. The servers outside Tu in Phase 1
and the server q in Phase 2 are helpers coming to aid
the servers inside Tu and T−q . From each region, these
helpers move at the speed proportional to the number
of the online servers in that region, which helps in
removing them quickly from regions with excess servers.
Of course, the online algorithm does not know which
regions have excess servers and which ones do not (as
it does not know the offline state), but the number of
servers in a region serves as a good measure of this.
The second main idea is to keep the total speed of the
helpers proportional to the total speed of the servers
inside Tu and T−q . This prevents the algorithm from
becoming overly aggressive and keeps the cost of the
moving helpers comparable to the cost incurred within
Tu and T−1q . As for DC, the analysis of our algorithm
is based on a carefully designed potential function.

3.2 Analysis We will analyze the algorithm based
on a suitable potential function Φ(t). Let ALG(t) and
OPT(t) denote the cost of the algorithm and of the
adversary respectively, for serving the request at time
t. Let ∆tΦ = Φ(t) − Φ(t − 1) denote the change
of the potential at time t. We will ensure that Φ is
non-negative and bounded from above by a function of
h, k, d, and length of the longest edge in T . Therefore,
to show R competitiveness, it suffices to show that
the following holds at each time t: ALG(t) + ∆tΦ ≤
R ·OPT(t).

To show this, we split the analysis into two parts:
First, we let the adversary move its servers to serve the
request. Then we consider the move of the algorithm.
Let ∆OPT

t Φ and ∆ALG
t Φ denote the changes in Φ

due to the move of the adversary and the algorithm
respectively. Clearly, ∆tΦ = ∆OPT

t Φ + ∆ALG
t Φ, and

thus it suffices to show the following two inequalities:

∆OPT
t Φ ≤ R ·OPT (t)(3.1)

ALG(t) + ∆ALG
t Φ ≤ 0(3.2)

3.2.1 Potential function Before we define the po-
tential, we need to formalize the notion of excess and
deficiency in the subtrees of T . Let d(a, b) denote
the distance of points a and b. For e = (u, v) ∈ T ,
where v is the node closer to the root, we define ke :=
ku+ 1

d(u,v)

∑
s∈e d(s, v). Note that this is the number of

online servers in Tu, plus the possible single server in e
counted fractionally, proportionally to its position along
e. Let hu denote the number of offline servers inside Tu.
For an edge e, let `(e) denote its level with the conven-
tion that the edges from leaf to their parents have level
1, and the edges from root to its children have level d.
For ` = 1, . . . , d, let β` be some geometrically increasing
constants that will be defined later. For and edge e we
define the excess Ee of e and the deficiency De of e as
follows

Ee = max{ke − bβ`(e) · huc, 0} · d(u, v)

De = max{bβ`(e) · huc − ke, 0} · d(u, v).

Note that these compare ke to hu with respect to the
excess threshold β`(e). We call an edge excessive, if
Ee > 0, otherwise we call it deficient. Let us state a
few basic properties of these two terms.

Observation 3.3. Let e be an edge containing an algo-
rithm’s server s in its interior. If e is excessive, it can-
not become deficient unless s moves upwards completely
outside of the interior of e. Similarly, if e is deficient,
it cannot become excessive unless s leaves interior of e
completely.

Note that no other server can pass through e while s
still resides there and the contribution of s to ke is a
nonzero value strictly smaller than 1, while bβ`huc is an
integer.

Observation 3.4. Let e be an edge and s be an algo-
rithm’s server in its interior moving by a distance x.
Then either De or Ee changes exactly by x.

This is because ke changes by x/d(u, v), and therefore
the change of De (resp. Ee) is x.

Observation 3.5. If an adversary server passes
through the edge e, change in De (resp. Ee) will be at
most dβ`e · d(u, v).

To see this, note that bβ`(e)huc ≤ bβ`(e)(hu − 1)c +
dβ`(e)e.

We now fix the excess thresholds. We first define β
depending on δ = k/h as,

β = 2 if δ ≥ 2d, and β = δ1/d for δ ≤ 2d.

For each ` = 1, . . . , d, we define the excess threshold for
all edges in the level ` as β` := β`−1. We also denote
γ := β

β−1 . Note that, for all possible δ > 1, our choices
satisfy 1 < β ≤ 2 and γ ≥ 2. Now, we can define the
potential. Let

Φ :=
∑
e∈T

(
αD`(e)De + αE`(e)Ee

)
,

where the coefficients αD` and αE` are as follows:

αD` := 2`− 1 for 1 ≤ ` ≤ d

αEd :=
δ

δ − βd

(
3 +

βd
δ
αDd

)
αE` :=

d−1∑
i=`

γi−`+1

(
2 +

1

β
αDi

)
+ γd−`αEd for 1 ≤ ` < d.

Note that αD` > αD`−1 and αE` < αE`−1 for all 1 < ` ≤ d.

The latter follows as the multipliers γi−`+1 and γd−`

decrease with increasing ` and moreover the summation
in the first term of αE` has fewer terms as ` increases.

To prove the desired competitive ratio for Algo-
rithm 1, the idea will be to show that the good moves
(when a server enters a region with deficiency, or leaves a
region with excess) contribute more than the bad moves
(when a server enters a region with excess, or leaves a
region that is already deficient).

As the dynamics of the servers can be decomposed
into elementary moves, it suffices to only analyze these.
We will also assume that no servers of A are located at
a node. This is without loss of generality, as only the
moving servers can cause a change in the potential, and
each server appears at a node just for an infinitesimal
moment during its motion.

The following two lemmas give some properties of
the deficient and excessive subtrees, which will be used
later in the proof of Theorem 1.3. The proofs of both
these Lemmas are located in Appendix A.1.

Lemma 3.1. (Excess in Phase 1) Let us assume
that no server of A′ = A \Tu resides at a node. For the
set E = {s ∈ A′ | s ∈ e, Ee > 0} of servers which are
located in the excessive edges, and for D = A′ \ E, the
following holds. If ku ≤ bβ2huc, then we have∑

s∈D
ks ≤ βd(h− hu) and

∑
s∈E

ks ≥ k − βdh.

Lemma 3.2. (Excess in Phase 2) Let us assume
that no server of A′ = A \ {q} resides at a node. For
the set E = {s ∈ A′ | s ∈ e, Ee > 0} of servers which
are located in the excessive edges, and for D = A′ \ E,
the following holds. If k−q ≥ bβ`h−q c, then we have∑

s∈D
ks ≤

1

β
k−q and

∑
s∈E

ks ≥
1

γ
k−q .

3.2.2 Proof of Theorem 1.3 We now show the
main technical result, which directly implies Theorem
1.3.

Theorem 3.1. The competitive ratio of Algorithm 1 in
depth-d trees is O(d · γd+1).

This implies Theorem 1.3 as follows. If δ ≥ 2d, we
have β = 2 and γ = 2, and we get the competitive
ratio O(d · 2d+1). For 1 < δ < 2d, we have β = δ1/d

and therefore the competitive ratio is O(d·(δ1/d

δ1/d−1)d+1).

Moreover if δ = (1 + ε) for some 0 < ε ≤ 1, we have
β = (1 + ε)1/d ≥ 1 + 1

2d . In this case, we get the ratio

O(d · (2d
ε)d+1), as γ ≤ (1 + ε)1/d · 2dε .

We now prove Theorem 3.1.

Proof. [Proof of Theorem 3.1] As Φ is non-negative and
bounded from above by a function of h, k, d, and the
length of the longest edge in T , it suffices to show the
inequalities (3.1) and (3.2).

We start with (3.1) which is straightforward. By
Observation 3.5, the move of a single adversary’s server
through an edge e of length xe changes De or Ee in the
potential by at most dβ`(e)exe. As the adversary incurs
cost xe during this move, we need to show the following
inequalities:

dβ`exe · αD` ≤ R · xe for all 1 ≤ ` ≤ d
dβ`exe · αE` ≤ R · xe for all 1 ≤ ` ≤ d.

As we show in Lemma 3.5 below, dβ`eαD` and dβ`eαE`
are of order O(d · γd+1). Therefore, there is R =
Θ(d · γd+1), which satisfies (3.1).

We now consider (3.2) which is much more chal-
lenging to show. Let us denote AE the set of edges
containing some server from A in their interior. We call
an elementary step a part of the motion of the algorithm
during which A and AE remain unchanged, and all the
servers of A are located in the interior of the edges of T .
Lemmas 3.3 and 3.4 below show that (3.2) holds during
an elementary step, and the theorem would follow by
summing (3.2) over all the elementary steps. �

Lemma 3.3. During an elementary step in Phase 1 of
Algorithm 1, the inequality (3.2) holds.

Proof. Without loss of generality, let us assume that
the elementary step lasted exactly 1 unit of time. This
makes the distance traveled by each server equals to its
speed, and makes calculations cleaner.

Let us first note that the cost ALG incurred by the
algorithm during this step is at most 2. Indeed, by
Observation 3.2, the total speed of the servers in Tu as
well as in A \ Tu is 1 (or 0 if there are none), and thus
the total speed of all servers is at most 2.

To estimate the change of the potential ∆Φ, we
decompose A into four sets: D, D̄ are the servers outside
(resp. inside) Tu residing in the deficient edges, and
E, Ē are the servers outside (resp. inside) Tu residing
in the excessive edges. Next, we evaluate ∆Φ due to
the movement of the servers from each class separately.
We distinguish two cases:

1. When ku ≥ bβ2huc = bβhuc. The servers from
D̄ are exactly those which have an offline server
located below them and their rise contributes to
the increase of deficiency in their edges. As one
server of the adversary is already located at the
requested point where no online server resides, we
have |D̄| ≤ hu − 1. Movement of the servers from
Ē causes a decrease of the excess in their edges
and we have |Ē| ≥ ku − |D̄| = ku − hu + 1. Since
all the servers in Tu have speed 1/ku, the change
of the potential due to their movement is at most
hu−1
ku

αD1 − (1 − hu−1
ku

)αE1 . So, by our assumption,
ku ≥ bβhuc ≥ βhu − 1 ≥ β(hu − 1), and thus
(hu − 1)/ku ≤ 1/β.

As for the servers outside Tu, all of them might
be contained in D in the worst case, but they can
cause an increase of Φ by at most αDd . Summing
this up and using 1

γ = 1− 1
β , we have

ALG + ∆Φ ≤

2 +

(
hu − 1

ku

)
αD1 −

(
1− hu − 1

ku

)
αE1 + αDd

≤ 2 +
1

β
αD1 −

1

γ
αE1 + αDd ≤ 0,

where the last inequality holds for the following
reason: We have αE1 /γ ≥ 2 + 1

βα
D
1 + γd−2αEd (for

d ≥ 2), which cancels 2 + 1
βα

D
1 . Also γd−2αEd

cancels αDd , since γ ≥ 2, and thereby γd−2αEd ≥
2d−2 · 3 ≥ 2d− 1 = αDd .

2. When ku < bβ2huc. Here we rely on the decrease of
the excess outside Tu, as all the movement inside Tu
might contribute to the deficiency increase, causing
Φ to increase by αD1 . As for the servers in D,

their contribution to the increase of Φ satisfies∑
s∈D ks/(k − ku)αD`(s) ≤ (βd/δ)α

D
d , as∑

s∈D ks
k − ku

≤ βd(h− hu)

k − ku
≤ βd(h− hu)

δ(h− ku/δ)
,

and
h− hu
h− ku/δ

< 1.

The first inequality follows from Lemma 3.1. For-
tunately, the movement of the servers in E assures
the desired decrease of the potential as, by Lemma
3.1, we have

∑
s∈E ks ≥ k − βdh. Thus, the move-

ment of servers from E causes the decrease of Φ by
at least

∑
s∈E ks/(k − ku)αE`(s) ≥ ((δ − βd)/δ)αEd ,

as ∑
s∈E ks
k − ku

≥ k − βdh
k

≥ h(δ − βd)
hδ

.

Summing everything up, we obtain

ALG+ ∆Φ ≤ 2 + αD1 +
βd
δ
αDd −

δ − βd
δ

αEd ≤ 0,

where the second inequality holds by our choice of

αD1 = 1 and αEd = δ
δ−βd

(
3 + βd

δ α
D
d

)
.

�

Lemma 3.4. During an elementary step in Phase 2 of
Algorithm 1, the inequality (3.2) holds.

Proof. Similarly to the proof of the preceding lemma, we
assume (without loss of generality) that the duration of
the elementary step is exactly 1 time unit, so that the
speed of each server equals the distance it travels. As
the speed of the server q is 1, it also moves by distance
1. The servers in T−q (strictly below q) move in total by∑
s∈A\{q}

ks
k−q

= 1, and therefore ALG ≤ 2. We denote

` the level of the edge containing q. To estimate the
change of the potential, we again consider two cases.

1. When k−q ≥ β`h
−
q . Here the movement of q

increases the excess in the edge containing q. Let us
denote E (resp. D) the servers of A \ {q} residing
in the excessive resp. deficient edges. By taking
the largest possible αD and the smallest possible
αE coefficient in the estimation, we can bound the
change of the potential due to the move of the
servers in T−q as,

αD`−1
∑
s∈D

ks

k−q
− αE`−1

∑
s∈E

ks

k−q
≤ 1

β
αD`−1 −

1

γ
αE`−1,

where the above inequality holds due to the Lemma
3.2.

As the movement of q itself causes an increase of Φ
by αE` , we have

ALG+ ∆Φ ≤ 2 + αD`−1/β −
1

γ
αE`−1 + αE` .

To see that this is non-positive, recall that αE` =∑d−1
i=` γ

i−`+1
(

2 + 1
βα

D
i

)
+ γd−`αEd . Therefore

1

γ
αE`−1 =

1

γ

d−1∑
i=`−1

γi−`+2
(
2 +

1

β
αDi
)

+
1

γ
γd−`+1αEd

=
(
2 +

1

β
αD`−1

)
+

d−1∑
i=`

γi−`+1
(
2 +

1

β
αDi
)

+ γd−`αEd

= 2 +
1

β
αD`−1 + αE` .

2. When k−q < bβ`h−q c. This case is much simpler. All
the movement inside of T−q might contribute to the
increase of deficiency at level at most `−1. On the
other hand, q then causes a decrease of deficiency
at level ` and we have ALG+∆Φ ≤ 2+αD`−1−αD` .
This is less or equal to 0, as αD` ≥ αD`−1 + 2.

�

Lemma 3.5. For each 1 ≤ ` ≤ d, both dβ`eαD` and
dβ`eαE` are of order O(d · γd+1).

Proof. [Proof of Lemma 3.5] We have defined αD` =
2`− 1, and therefore

dβ`eαD` ≤ 2 · β`(2`− 1) ≤ βd(2d− 1) = O(d · γd+1),

since we have chosen 1 < β ≤ 2 and γ ≥ 2 for any
possible δ.

Now we estimate the value of αEd . Since δ ≥ β · βd
and δ

δ−βd
≤ 1

1−βd/δ
≤ 1

1−1/β = γ, we have

αEd =
δ

δ − βd

(
3 +

βd
δ
αDd

)
≤ γ(3 +

1

β
αDd),

which is O(d · γ), as β > 1 and αDd = O(d). For αE` , we
have

αE` ≤ (2 +
1

β
αDd)

d−1∑
i=`

γi−`+1 + γd−`αEd

≤ γd−`+1
(
2 +

2d− 3

β
+ αEd

)
= O(γd−`+2 · d),

because 1 < β ≤ 2 and αEd = O(d). The second
inequality follows by summing-up the geometric series
and using the fact that γ ≥ 2. Therefore, as β` ≤ γ`−1,
we have dβ`eαE` = O(γd+1d), and this concludes the
proof. �

4 Lower Bounds

In this section we prove Theorems 1.4 and 1.2. We first
show a general lower bound on the competitive ratio of
any algorithm for depth-2 HSTs. Then we give lower
bound on the competitive ratio of WFA.

4.1 General lower bound for depth-2 HSTs We
now give a lower bound on the competitive ratio of any
deterministic online algorithm on depth-2 HSTs. In
particular, we show that for sufficiently large h, any
deterministic online algorithm has competitive ratio at
least 2.4.

The metric space is a depth-2 HST T with the
following properties: T contains at least k+1 elementary
subtrees and each one of them has at least h leaves. To
ease our calculations, we assume that edges of the lower
level have length ε � 1 and edges of the upper level
have length 1 − ε. So the distance between leaves of
different elementary subtrees is 2.

Theorem 1.4 (restated). For sufficiently large h,
even when k/h→∞, there is no 2.4-competitive deter-
ministic algorithm for general metrics, and in particular
even for depth-2 HSTs.

Proof. For a level 1 node u, let Tu denote the elementary
subtree rooted at u. We assume without loss of
generality that all the offline and online servers are
always located at the leaves. We say that a server is
inside subtree Tu, if it is located at some leaf of Tu. If
there are no online servers at the leaves of Tu, we say
that Tu is empty. Observe that at any given time there
exists at least one empty elementary subtree.

Let A be an online algorithm. The adversarial
strategy consists of arbitrarily many iterations of a
phase. During a phase, some offline servers are moved to
an empty elementary subtree Tu and requests are made
there until the cost incurred by A is sufficiently large.
At this point the phase ends and a new phase may start
in another empty subtree. Let ALG and ADV denote
the cost of A and adversary respectively during a phase.
We will ensure that for all phases ALG ≥ 2.4 · ADV.
This implies the lower bound on the competitive ratio
of A.

We describe a phase of the adversarial strategy.
The adversary moves some ` ≤ h servers to the empty
elementary subtree Tu and makes requests at leaves of
Tu until A brings m servers there. In particular, each
request appears at a leaf of Tu that is not occupied by
a server of A. We denote by s(i) the cost that A has
to incur for serving requests inside Tu until it moves
its ith server there (this does not include the cost of
moving the server from outside Tu). Clearly, s(1) = 0
and s(i) ≤ s(i+1) for all i > 0. We restrict our attention

to i ≤ h. The choice of ` and m depends on the values
s(i) for 2 ≤ i ≤ h. We will now show that for any values
of s(i)’s, the adversary can choose ` and m such that
ALG ≥ 2.4 ·ADV.

First, if there exists an i such that s(i) ≥ 3i, we
set ` = m = i. Intuitively, the algorithm is too slow
in bringing his servers in this case. Both A and the
adversary incur a cost of 2i to move i servers to Tu.
However, A pays a cost of s(i) for serving requests inside
Tu, while the adversary can serve all those requests at
zero cost (all requests can be located at leaves occupied
by offline servers). Overall, the cost ofA is 2i+s(i) ≥ 5i,
while the offline cost is 2i. Thus we get that ALG ≥
2.5 ·ADV.

Similarly, if s(i) ≤ (10i−24)/7 for some i, we choose
` = 1 and m = i. Roughly speaking, in that case
the algorithm is too “aggressive” in bringing its first
i servers, thus incurring a large movement cost. Here,
the adversary only moves one server to Tu. Each request
is issued at an empty leaf of Tu. Therefore A pays for
each request in Tu and the same holds for the single
server of the adversary.

So, ALG = 2i + s(i) and ADV = 2 + s(i). By our
assumption on s(i), this gives

ALG− 2.4 ·ADV = 2i+ s(i)− 4.8− 2.4 · s(i)

= 2i− 4.8− 1.4 · s(i) ≥ 0

We can thus restrict our attention to the case that
s(i) ∈ (10i−24

7 , 3i), for all 2 ≤ i ≤ h. Now, for 1 < ` < h
and m = h, we can upper bound the offline cost as
follows:

ADV ≤ 2`+ (s(h)− s(`)) · h− `+ 1

h

The first term is the cost of moving ` servers to
Tu. The second term upper bounds the cost for serving
requests in Tu for the following reason: the adversary
has to pay only during the part when A has at least
` servers at Tu. The cost of the adversary during this
time equals the cost of A (which is s(h)− s(`)) divided
by its competitive ratio on a uniform metric (which is
clearly larger than h

h−`+1). Let us denote c = s(h)/h.
Note that assuming h is large enough, c ∈ (1, 3). We
get that

ALG

ADV
≥ 2h+ s(h)

2`+ (s(h)− s(`)) · h−`+1
h

≥ 2h+ ch

2`+ (ch− 10`−24
7) · h−`+1

h

(4.3)

We now show that for every value of c ∈ (1, 4), there is
an ` = βh, where β is a constant depending on c, such

that the right hand side of (4.3) is at least 2.4. First,
as h is large enough, the right hand side is arbitrarily
close to

2h+ ch

2`+ (ch− 10`/7) · (1− `/h)
=

2 + c

2β + (c− 10β/7)(1− β)
=

2 + c

10/7β2 + (4/7− c)β + c

We choose β := (c − 4/7)/(20/7). Note that, as
c ∈ (1, 3), we have that β < 1 and hence ` < h.
The expression above then evaluates to (2 + c)/(c −
(c − 4

7)2/ 40
7). By standard calculus, this expression is

minimized at c = (2
√

221 − 14)/7 where it attains a
value higher than 2.419.

�

4.2 Lower bound for WFA on depth-3 HSTs
We give an Ω(h) lower bound on the competitive ratio
of the Work Function Algorithm (WFA) in the (h, k)-
setting. More precisely, we show a lower bound of
h + 1/3 for k = 2h. We first present the lower bound
for a depth-3 HST. In Appendix B we show how the
construction can be adapted to work for the line. We
also show that this exactly matches the upper bound of
(h + 1) · OPTh − OPTk implied by results of [8, 3] for
the line.

The basic idea behind the lower bound is to trick the
WFA to use only h servers for servicing requests in an
“active region” for a long time before it moves its extra
available online servers. Moreover, we make sure that
during the time the WFA uses h servers in that region,
it incurs an Ω(h) times higher cost than the adversary.
Finally, when WFA realizes that it should bring its extra
servers, the adversary moves all its servers to some
different region and starts making requests there. So
eventually, WFA is unable to use its additional servers
in a useful way to improve its performance.

Theorem 1.2 (restated). The competitive ratio of
WFA in a depth-3 HST for k = 2h is at least h+ 1/3.

Proof. Let T be a depth-3 HST. We assume that
the lengths of the edges in a root-to-leaf path are
1−ε
2 , ε−ε

′

2 , ε
′

2 , for ε′ � ε � 1. So the diameter of T
is 1 and the diameter of depth-2 subtrees is ε. Without
loss of generality we will also assume that 2

ε is integer.
Let L and R be two subtrees of depth 2. Inside each one
of them, we focus on 2 elementary subtrees L1, L2 and
R1, R2 respectively (see figure 3). All requests appear at
leaves of those four elementary subtrees. Note that both

R

R1 R2L1 L2

L

· · ·· · · · · ·· · · · · ·· · · · · ·· · ·

Figure 3: The tree where the lower bound for WFA is
applied: All requests arrive at leaves of L1, L2, R1 and
R2.

the WFA and the adversary always have their servers at
leaves. This way, we say that some servers of the WFA
(or the adversary) are inside a subtree, meaning that
they are located at some leaves of that subtree.

The adversarial strategy consists of arbitrary many
iterations of a phase. At the beginning of the phase,
the WFA and the adversary have all their servers in the
same subtree, either L or R. At the end of the phase, all
servers are moved to the other subtree (R or L resp.),
so a new phase may start. Before describing the phase,
we give the basic strategy, which is repeated many times
during a phase. For any elementary subtree T , we define
strategy S(T).

Strategy S(T):

1. Adversary moves all its h servers to leaves
t1, t2, . . . , th of T .

2. While the WFA has i < h servers in T : Request
points t1, t2, . . . , ti+1 in an adversarial way (i.e each
time request a point where the WFA does not have
a server) until (i+ 1)th server arrives at T .

We now describe a left-to-right phase, i.e., a phase
which starts with all servers at L and ends with all
servers at R. A right-to-left phase is completely sym-
metric, i.e., we replace R by L and Ri by Li.

Left-to-right phase:

– Step 1: Apply strategy S(R1) until WFA moves h
servers to R1.

– Step 2: Repeat S(R2) and S(R1) until WFA moves
all its k servers to R.

We now state two basic lemmas for counting the
online and offline cost during each step. Proofs of those
lemmas, require a characterization of work function
values, which comes later on. Here we just give the
high-level idea behind the proofs. Let ALG and ADV
denote the online and offline cost respectively.

Lemma 4.1. During Step 1, ALG= h2 and ADV= h.

Intuitively, we will exploit the fact that the WFA
moves its servers too slowly towards R as long as ` < h.
In particular, we show that whenever the WFA has `
servers in R, it incurs a cost of 2` inside R before it
moves its (` + 1)th server there. This way we get that

the cost of the algorithm is
∑h−1
`=1 2` + h = h2. The

fact that adversary pays h is trivial; the adversary just
moves its h servers by distance 1 and then serves all
requests at zero cost.

Lemma 4.2. During Step 2, ALG ≥ (2− 2ε)h2 +h and
ADV ≤ (2 + ε)h.

Roughly speaking, to prove this lemma we make
sure that for almost the whole Step 2, the WFA has h
servers in R and they incur a cost h times higher than
the adversary. The additional servers move to R almost
at the end of the phase.

The theorem follows from lemmata 4.1 and 4.2.
Summing up for the whole phase, the offline cost is
(3 + ε) ·h and the online cost is 3(3− 2ε)h2 +h. We get
that

ALG

ADV
≥ h2 + (2− 2ε)h2 + h

h+ (2 + ε)h
=

(3− 2ε)h2 + h

(3 + ε)h
→ h+

1

3
.

�

Work Function values We now give a detailed char-
acterization of how the work function evolves during
left-to-right phase. For right-to-left phases the struc-
ture is completely symmetric.

Basic Properties: Recall that for any two configu-
rations X,Y at distance d(X,Y) the work function w
satisfies,

w(X) ≤ w(Y) + d(X,Y).

Also, let w and w′ the work function before and after a
request r respectively. For a configuration X such that
r ∈ X, we have that w′(X) = w(X). In the rest of
this section, we use these properties of work functions
without further explanation.

Notation: Let (Li, Rk−i) denote a configuration which
has i servers at L and (k − i) servers at R. Let
w(Li, Rk−i) the minimum work function value of a
configuration (Li, Rk−i). If we need to make precise how
many servers are in each elementary subtree, we denote
by (Li, r1, r2) a configuration which has i servers at L,
r1 servers at R1 and r2 servers at R2. Same as before,
w(Li, r1, r2) denotes the minimum work function value
of those configurations.

Initialization: For convenience we assume that at the
beginning of the phase the minimum work function

value of a configuration is zero. Note that this is without
loss of generality: If m = minX w(X) when the phase
starts, we just subtract m from the work function values
of all configurations. We require the invariant that at
the beginning of the phase, for 0 ≤ i ≤ k :

(4.4) w(Lk−i, Ri) = i.

This is clearly true for the beginning of the first
phase, as all online servers are initially at L. We are
going to make sure, that the symmetric condition holds
at the end of the phase, so a right-to-left phase may
start.
First Step: We now focus on the first step of the
phase, i.e. the first execution of S(R1). The next lemma
characterizes the structure of the work function each
time the WFA decides to move a new server to R.

Lemma 4.3. At the moment when the WFA moves its
`th server from L to R, for any 1 ≤ ` < h, the following
two things hold:

(i) For all 0 ≤ i < `, w(Lk−i, Ri) = w(Lk−`, R`) +
(`− i)

(ii) For all ` ≤ i ≤ k, w(Lk−i, Ri) = w(Lk−`, R`) +
(i− `)

In other words, having ` servers in R is the lowest state,
and all other states are tight with respect to it.

Proof. We use induction on `.
Induction Base: In the base case when ` = 0, the

first part of the lemma is vacuously true. The second
part of the Lemma holds by the assumed invariant (4.4).

Induction Step: Assume that this is true for some
0 ≤ ` < h − 1. We are going to show that the lemma
holds for `+ 1. Let w be the work function at the time
when the `th server arrives at R and w′ be the work
function at the time when the (`+1)th server arrives at
R.

(i) We first show that the lemma holds for i = `: By
construction of the WFA, at the moment it moves
its (` + 1)th server at R, the following equation
holds:

(4.5) w′(Lk−`, R`) = w′(Lk−(`+1), R`+1) + 1,

We now focus on i < `. By induction hypothesis,
we have that w(Lk−i, Ri) = w(Lk−`, R`) + (`− i).
During the time when WFA has ` servers at R,
all requests are located in R. Thus, w(Lk−i, Ri)
increases at least as much as w(Lk−`, R`), i.e.

w′(Lk−i, Ri)− w(Lk−i, Ri) ≥

w′(Lk−`, R`)− w(Lk−`, R`).

So, we have that

w′(Lk−i, Ri) ≥
w′(Lk−`, R`)− w(Lk−`, R`) + w(Lk−i, Ri)

= w′(Lk−`, R`) + (`− i)

Clearly, as w′(Lk−i, Ri) ≤ w′(Lk−`, R`) + (` − i).
This implies that equality holds, and we get that

w′(Lk−i, Ri) = w′(Lk−`, R`) + (`− i)

= w(Lk−`−1, R`+1) + (`+ 1− i),
where the last equality holds due to (4.5).

(ii) For i ≥ (` + 1): Since the beginning of the phase
there are (` + 1) points requested, so w(Lk−i, Ri)
does not increase. By (4.4), we get that

w′(Lk−i, Ri) = i = `+ 1 + (i− (`+ 1))

= w′(Lk−`−1, R`+1) + i− (`+ 1).

�

Second step: By lemma 4.3, at the beginning of the
second step, the work function values satisfy:
(4.6)
w(L2h−i, Ri) = w(Lh, Rh) + (h− i), for 0 ≤ i ≤ h,

(4.7)
w(L2h−i, Ri) = w(Lh, Rh) + (i− h), for h ≤ i ≤ 2h,

We first claim that (4.6) holds for the entire second
step. This follows as all the requests arrive at R, so the
optimal way to serve those requests using i < h servers,
can only have larger cost than using h servers.

We now consider executions of S during the time
that WFA has h servers in R. We describe the changes
in work function values of configurations (Lh, r1, r2)
during an execution of S(R2) and for S(R1) the situ-
ation will be completely symmetric. We require that
initially for all i ≤ h,

(4.8) w(Lh, h− i, i) = w(Lh, h, 0) + ε · i.

This is true at the beginning of the second step, and
we are going to make sure that at the end of S(R2) the
symmetric is true, so an execution of S(R1) can start.
Similarly to lemma 4.3 we can show the following:

Lemma 4.4. Consider an execution of S(R2) such that
WFA has exactly h servers in R. At the moment when
the `th server moves to R2, the following two things
hold:

(i) For all 0 ≤ i < `, w(Lh, h−i, i) = w(Lh, h−`, `)+
ε(`− i)

(ii) For all ` ≤ i ≤ h, w(Lh, h−i, i) = w(Lh, h−`, `)+
ε(i− `)

Proof. The proof is exactly the same as the proof
of lemma 4.3, we just need to replace (Lk−i, Ri) by
(Lh, h− i, i) and scale all distances by ε. �

We get that when hth server arrives to R2,
w(Lh, i, h − i) = w(Lh, 0, h) + ε · i for all i ≤ h. Ob-
serve that this is the symmetric version of (4.8). That
means, the work function satisfies the initial require-
ment for S(R1) to start.

Now, we come to harder part where we want
to argue that the WFA does not bring in extra
servers. To this end, we will investigate the changes
in w(Lh−i, Rh+i) during executions of second step.

Lemma 4.5. Consider an execution of S such that for
all its duration WFA has at most h + i servers in
R, for 0 ≤ i ≤ (h − 1). During such an execution,
∆w(Lh−i, Rh+i) = ε(h− i).

Proof. We prove the lemma for executions of S(R2). We
focus on configurations (Lh−i, Rh+i). Initially, among
those configurations, a configuration (Lh−i, h, i) has the
minimum work function value. This is clearly true for
the first execution of second step and we will show that
it holds for all subsequent executions. Moreover for all
j ≤ h, the following equation holds:

(4.9) w(Lh−i, h− j, i+ j) = w(Lh−i, h, i) + j · ε

Up to the time that at most i points of R2 are requested,
w(Lh−i, h, i) does not increase. After the time that ith
WFA server arrives at R2, we can apply lemma 4.4 for
` = i to h. In particular, w(Lh−i, h− `+ i, `) increases
in the same way as w(Lh, h− `, `).

At the end, a configuration (Lh−i, i, h) has the
minimum work function value. Moreover, we have that
w′(Lh−i, i, h) = w(Lh−i, i, h), because exactly h points
of R2 are requested. For w(Lh−i, i, h) we can apply
equation (4.9) for j = h− i. We get that

w′(Lh−i, Rh+i) = w′(Lh−i, i, h) = w(Lh−i, i, h) =

= w(Lh−i, Rh+i) + ε · (h− i).
�

Next two lemmata show that we can force the
algorithm use only h servers in R for a long time and
that additional servers arrive roughly at the same time.

Let N = 2/ε.

Lemma 4.6. After N −2 executions of S in Step 2, the
WFA still has h servers in R

Proof. Using lemma 4.5 we get that after (N − 2)
executions of S in Step 2,

(4.10) w(Lh, Rh) = h+ (N − 2) · ε · h = 3h− 2ε · h,

and w(Lh−1, Rh+1) = h+ 1 + (N − 2) · ε(h− 1) =

= 3h− 1− 2ε(h− 1).

(4.11)

By (4.10) and (4.11) we get that w(Lh−1, Rh+1) +
1 > w(Lh, Rh) + εh. That means, that up to the end of
(N −2)th execution of S, the WFA would always prefer
to move a server inside R by distance ε rather than
moving a server from L by distance 1. This clearly shows
that the WFA is still in some configuration (Lh, Rh).

�

Lemma 4.7. Step 2 consists of at most N+1 executions
of S.

Proof. Assume that after N executions of S in Step 2,
the WFA has h+i servers in R, for some 0 ≤ i ≤ (h−1).
In other words, it is in some configuration (Lh−i, Rh+i).
We can apply lemma 4.5 for (Lh−i, Rh+i) for all N
executions. After N executions of S in Step 2

(4.12) ∆w(Lh−i, Rh+i) = 2/ε · ε · (h− i) = 2(h− i)

By adding (4.7) and (4.12) we get that

w′(Lh−i, Rh+i) = w(Lh−i, Rh+i) + 2(h− i)
= h+ i+ 2h− 2i = 2h+ (h− i).(4.13)

Since the beginning of the phase, exactly 2h points
in R are requested. Thus, w′(L0, R2h) = w(L0, R2h) =
2h; during the whole phase. This way (4.13) is equiv-
alent to w′(Lh−i, Rh+i) = w′(L0, R2h) + (h − i). That
implies that during the next execution of S, the WFA
moves to the configuration (L0, R2h), i.e brings all its
servers at R, so the phase ends.

�

End of the phase: By (4.6) and (4.13) we get that
in the end of the phase w(Li, R2h−i) = 2h + i for all
0 ≤ i ≤ 2h. So a new right-to-left phase may start,
satisfying the initial assumption about the structure of
work function values.

Bounding Costs Now, we are ready to bound online
and offline costs during the phase.

Lemma 4.8. During the time when the WFA uses `
servers in R, it incurs a cost of 2`.

Proof. Let w the work function at time when `th server
arrives at R and w′ the work function at time when
(`+ 1)th arrives there. From lemma 4.3 we get that

w′(Lk−`, R`)− w(Lk−`, R`) =

= w′(Lk−`−1, R`+1) + 1− w(Lk−`−1, R`+1) = 2.

That means, the optimal way to serve all requests dur-
ing this time using ` servers costs 2 (this holds because
this configuration is in the support of work function).
All those requests are placed into an elementary sub-
tree, which is equivalent to the paging problem. By [11]
we get that for that request sequence, any online al-
gorithm using ` servers incurs a cost at least `. Thus,
WFA pays at least 2` inside R during the time it has `
servers there. �

Lemma 4.1 (restated). During Step 1, ALG= h2

and ADV= h.

Proof. Clearly, ADV= h; the adversary moves h servers
by distance 1 and then serves all requests at zero cost.
By lemma 4.8 we get that WFA incurs a cost

∑h−1
`=1 2`

inside R. Moreover, it pays a movement cost of h to
move its h servers from L to R. Overall, we get that
the online cost during Step 1 is

∑h−1
`=1 2`+ h = h2.

�

Lemma 4.9. Consider an execution of S during Step 2,
where the WFA uses only the h servers in R to serve
the requests. For such an execution, ALG= εh2 and
ADV= εh.

Proof. Same as proof of lemma 4.1 , just scale every-
thing by ε. �

Lemma 4.2 (restated). During Step 2, ALG≥ (2 −
2ε)h2 + h and ADV≤ (2 + ε)h.

Proof. Second step consists of at most 2/ε+1 executions
of S, where in each one of them the adversary incurs a
cost ε · h. Thus the offline cost is at most (2 + ε)h.

Let us now count the online cost during Step 2. By
lemma 4.6, there are N−2 = 2

ε −2 executions of S such
that WFA has h servers in R. By lemma 4.9 we get that
during each one of those executions, the online cost is
ε · h2. For the rest of Step 2, the WFA incurs a cost of
at least h, as it moves h servers from L to R. We get
that overall, during Step 2, the cost of WFA is at least

(
2

ε
− 2) · ε · h2 + h = (2− 2ε)h2 + h.

�

5 Concluding Remarks

Several intriguing open questions remain, and we list
some of them here.

• Is the dependence on d in Theorem 1.3 neces-
sary? While Theorem 1.4 gives a separation be-
tween depth-1 and depth-2 HSTs, it is unclear to
us whether a lower bound which increases substan-
tially with depth is possible. Note that a lower
bound of g(d) for depth d, where g(d) → ∞ as
d → ∞ (provided that h is large enough), would
be very surprising. This would imply that there is
no O(1)-competitive algorithm for general metric
spaces.

• Can we get an o(h)-competitive algorithm for other
metric spaces? An interesting metric is the line:
Both DC and WFA have competitive ratio Ω(h)
in the line, and we do not even know any good
candidate algorithm. Designing an algorithm with
such a guarantee would be very interesting. Also,
the only lower bound known for the line is 2 for
h = 2. It would be interesting to get a non-trivial
lower bound for arbitrary h.

References

[1] Nikhil Bansal, Marek Eliáš, Lukasz Jeż, Grigorios
Koumoutsos, and Kirk Pruhs. Tight bounds for double
coverage against weak adversaries. In Approximation
and Online Algorithms - 13th International Workshop
(WAOA), pages 47–58, 2015.

[2] Yair Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In 37th An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 184–193, 1996.

[3] Yair Bartal and Elias Koutsoupias. On the compet-
itive ratio of the work function algorithm for the k-
server problem. Theor. Comput. Sci., 324(2–3):337–
345, 2004.

[4] Allan Borodin and Ran El-Yaniv. Online computation
and competitive analysis. Cambridge University Press,
1998.

[5] Marek Chrobak, Howard J. Karloff, Thomas H. Payne,
and Sundar Vishwanathan. New results on server
problems. SIAM J. Discrete Math., 4(2):172–181,
1991.

[6] Marek Chrobak and Lawrence L. Larmore. An optimal
on-line algorithm for k-servers on trees. SIAM J.
Comput., 20(1):144–148, 1991.

[7] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. J. ACM, 47(4):617–643, July
2000.

[8] Elias Koutsoupias. Weak adversaries for the k-server
problem. In Proc. of the 40th Symp. on Foundations
of Computer Science (FOCS), pages 444–449, 1999.

[9] Elias Koutsoupias and Christos H. Papadimitriou. On
the k-server conjecture. J. ACM, 42(5):971–983, 1995.

[10] Mark S. Manasse, Lyle A. McGeoch, and Daniel D.
Sleator. Competitive algorithms for server problems.
J. ACM, 11(2):208–230, 1990.

[11] Daniel Dominic Sleator and Robert Endre Tarjan.
Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985.

[12] Neal E. Young. The k-server dual and loose competi-
tiveness for paging. Algorithmica, 11(6):525–541, 1994.

A Algorithm

A.1 Proofs of lemmas from Section 3

Proof. During the Phase 1, each server of the algorithm
resides either in Tu or in Ts for some s ∈ E∪D; therefore
k = ku+

∑
s∈E ks+

∑
s∈D ks. However, for each s ∈ D,

we have ks ≤ bβ`(s) ·hsc, otherwise Ee would be positive
for the edge e containing s. Therefore we have∑

s∈D
ks ≤

∑
s∈D
bβ`(s)hsc ≤

∑
s∈D
bβdhsc ≤

≤
∑
s∈D

βd · hs ≤ βd(h− hu).

To prove the second inequality, observe that∑
s∈E

ks = k − ku −
∑
s∈D

ks ≥ k − ku − βd(h− hu).

However, we assumed that ku ≤ bβ2huc ≤ βdhu, and
therefore

∑
s∈E ks ≥ k − βd · h. �

Proof. [Proof of Lemma 3.2] In this lemma, we crucially
use the fact that β` = β ·β`−1. Similarly to the previous
proof, we have ks ≤ bβ`(s) ·hsc ≤ β`−1 ·hs for each server
s ∈ D, since s can be located in a level at most ` − 1.
However, in this case we claim that∑

s∈D
ks ≤

∑
s∈D

β`−1 · hs ≤ β`−1(h−q − 1).

This is because we assume that adversary has already
served the request and some server a, one of his h−q
servers in T−q , is already at the requested point. Since
no online servers reside in the path between q and the
requested point, a does not belong to Ts for any s ∈
D ∪ E. Therefore we have

∑
s∈D hs ≤

∑
s∈(D∪E) hs ≤

h−q −1. To finish the proof of the first inequality, observe
that our assumption implies

k−q ≥ bββ`−1h−q c ≥ ββ`−1h−q − 1 ≥ β(β`−1h
−
q − 1).

Therefore we have β`−1(h−q − 1) ≤ β`−1h−q − 1 ≤ k−q /β.

For the second inequality, note that 1
γ = (1 − 1

β).

Since k−q =
∑
s∈D ks +

∑
s∈E ks, we have

∑
s∈E

ks ≥ k−q −
1

β
k−q =

1

γ
k−q .

�

A.2 Algorithm for bounded-diameter trees
Since Algorithm 1 works for depth-d trees with arbitrary
edge lengths, we can embed any diameter-d tree into a
depth-d tree with a very small distortion by adding fake
paths of short edges to all nodes.

More precisely, let T be a tree of diameter d with
arbitrary edge lengths, and let α be the length of the
shortest edge of T (for any finite T such α exists). We
fix ε > 0 a small constant. We create an embedding
T ′ of T as follows. We choose the root r arbitrarily,
and to each node v ∈ T such that the path from r to
v contains ` edges, we attach a path containing d − `
edges of total length εα/2. The leaf at the end of this
path we denote v′. We run Algorithm 1 in T ′ and each
request at v ∈ T we translate to v′ ∈ T ′. We maintain
the correspondence between the servers in T and the
servers in T ′, and the same server which is finally moved
to v′ by Algorithm 1, we also use to serve the request
v ∈ T .

For the optimal solutions on T and T ′ we have
(1 + ε)OPT (T) ≥ OPT (T ′), since any feasible solution
in T we can be converted to a solution in T ′ with cost
at most (1 + ε) times higher. By Theorem 3.1, we
know that the cost of Algorithm 1 in T ′ is at most
R · OPT (T ′), for R = Θ(d · γd+1), and therefore we
have ALG(T ′) ≤ (1 + ε)R ·OPT (T).

B Lower bound for WFA on the line

The lower bound of Section 4.2 for the WFA can also
be applied on the line. The lower bound strategy is the
same as the one described for depth-3 HSTs, we just
need to replace subtrees by line segments.

More precisely, the lower bound strategy is applied
in an interval I of length 1. Let L and R be the leftmost
and rightmost regions of I, of length ε/2, for ε � 1.
Similarly, L1, L2 and R1, R2 are smaller regions inside
L and R respectively. Again, the distance between L1

and L2 (R1 and R2 resp.) is much larger than their
length. Whenever the adversary moves to such a region,
it places its servers in h equally spaced points inside it.
Similarly to the proof of Theorem 1.2, we can get a lower
bound h+ 1/3 on the competitive ratio of the WFA on
the line when k = 2h.

Interestingly, the lower bound obtained by this
construction for the line has a matching upper bound.
As it was observed in [1], results from [3], [8] imply that
for the line the cost of WFA with k servers WFAk is at
most (h+ 1)OPTh−OPTk + const , where OPTi is the
optimal cost using i servers. Briefly, this upper bound
holds for the following reason: In [8] it was shown that
in general metrics, WFAk ≤ 2hOPTh −OPTk + const.
However, if we restrict our attention to the line, using
the result of [3], we can get that

(B.1) WFAk ≤ (h+ 1)OPTh −OPTk + const .

See [1] for more details.
In theorem 1.2 we showed a lower bound (h +

1/3)OPTh on WFAk. We now show that this construc-
tion matches the upper bound of (B.1). In particular,
it suffices to show that (h + 1/3)OPTh goes arbitrary
close to (h+ 1)OPTh −OPTk, or equivalently

(B.2)
2OPTh

3
→ OPTk

As we showed in the proof of theorem 1.2, for every
phase of the lower bound strategy, OPTh ≤ (3 + ε) · h.
Moreover it is clear that OPTk = 2h; during a phase the
minimum work function value using k servers increases
by exactly 2h. We get that

2OPTh
3

≤ 2 · (3 + ε) · h
3

= 2h
3 + ε

3
→ 2h = OPTk.

