The (h, k)-Server Problem on Bounded-Depth Trees

Nikhil Bansal ${ }^{1}$, Marek Eliás ${ }^{1}$, Łukasz Jeż², and Grigorios Koumoutsos ${ }^{1}$

1 TU Eindhoven
2 University of Wrocław

The k-server problem

- One of the central problems in Online Algorithms
- Introduced by Manasse, McGeoch, Sleator '90

The k-server problem

- One of the central problems in Online Algorithms
- Introduced by Manasse, McGeoch, Sleator '90

Definition of the problem:

- We have k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}
- Target: minimize the total distance traveled by the servers

The k-server problem

- k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}

$$
\mathrm{t}=0
$$

The k-server problem

- k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}

$$
\mathrm{t}=1:
$$

- a

Ob

$$
\sigma=(\mathrm{c}, ?, ?, ?, \ldots)
$$

The k-server problem

- k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}

$$
\mathrm{t}=1:
$$

0

$$
\sigma=(\mathrm{c}, ?, ?, ?, \ldots)
$$

The k-server problem

- k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}

$$
\mathrm{t}=1
$$

cost:

O a
0
$\operatorname{dist}(\mathrm{c}, \mathrm{b})$

- b

0

$$
\sigma=(c, ?, ?, ?, \ldots)
$$

The k-server problem

- k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}

$$
t=2
$$

cost:
$\operatorname{dist}(\mathrm{c}, \mathrm{b})$

$$
\left.\begin{array}{cccc}
c \bigcirc & \bigcirc a & 0 \\
& \bullet b & \bullet \\
\sigma=(\mathrm{c}, \mathrm{~b}, ?, ?, \ldots
\end{array}\right)
$$

The k-server problem

- k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}

$$
t=2
$$

cost:
$\operatorname{dist}(\mathrm{c}, \mathrm{b})$

$$
\left.\begin{array}{cc}
c \bigcirc 0 & \bigcirc 0 \\
\sigma=(\mathrm{c}, \mathrm{~b}, ?, ?, \ldots
\end{array}\right)
$$

The k-server problem

- k servers in a metric space S
- At time t :
- Request arrives at some point $\sigma_{t} \in S$
- We have to decide what server to move to σ_{t}

$$
t=2
$$

cost: $\operatorname{dist}(\mathrm{c}, \mathrm{b})$
$+\operatorname{dist}(\mathrm{a}, \mathrm{b})$
c 0

- a

$$
\sigma=(\mathrm{c}, \mathrm{~b}, ?, ?, \ldots)
$$

Competitive ratio

Performance evaluation:

$$
\mathrm{R}(\sigma)=\frac{\mathrm{ALG}_{\mathrm{k}}(\sigma)}{\mathrm{OPT}_{\mathrm{k}}(\sigma)} ; \quad \text { Competitive ratio }=\max _{\sigma}(\mathrm{R}(\sigma))
$$

- $\mathrm{ALG}_{\mathrm{k}}(\sigma)$: cost of the online algorithm with k servers
- $\mathrm{OPT}_{k}(\sigma)$: cost of the optimal offline solution for k servers

Competitive ratio

Performance evaluation:

$$
\mathrm{R}(\sigma)=\frac{\mathrm{ALG}_{\mathrm{k}}(\sigma)}{\mathrm{OPT}_{k}(\sigma)} ; \quad \text { Competitive ratio }=\max _{\sigma}(\mathrm{R}(\sigma))
$$

- $\mathrm{ALG}_{\mathrm{k}}(\sigma)$: cost of the online algorithm with k servers
- $\mathrm{OPT}_{k}(\sigma)$: cost of the optimal offline solution for k servers

Achievable ratio is of order $\Theta(k)$ (in deterministic case):

- LB: k for any metric space of at least $k+1$ points (Manasse, McGeoch, Sleator '90)
- UB: k for DC in tree metrics (Chrobak et al. '91; Chrobak, Larmore '91)
- UB: $2 \mathrm{k}-1$ for the Work Function Algorithm by (Koutsoupias, Papadimitriou '95)

The (h, k)-server problem

Servers as a precious resource:

- Does adding new servers help to decrease the cost?
- Standard setting:
- If we add more servers to ALG, we also compare it to OPT with more servers
- Does not tell us whether the cost of ALG decreased or not

The (h, k)-server problem

Servers as a precious resource:

- Does adding new servers help to decrease the cost?
- Standard setting:
- If we add more servers to ALG, we also compare it to OPT with more servers
- Does not tell us whether the cost of ALG decreased or not

The (h, k)-server problem:

- h: \# of servers of OPT; k: \# of servers of ALG
- Fix h and add new servers only to ALG, i.e. $k>h$:

The (h, k)-server problem

Servers as a precious resource:

- Does adding new servers help to decrease the cost?
- Standard setting:
- If we add more servers to ALG, we also compare it to OPT with more servers
- Does not tell us whether the cost of ALG decreased or not

The (h, k)-server problem:

- h: \# of servers of OPT; k : \# of servers of ALG
- Fix h and add new servers only to ALG, i.e. $k>h$:

$$
\frac{\operatorname{ALG}_{h}(\sigma)}{\mathrm{OPT}_{h}(\sigma)} \approx h \quad \frac{\operatorname{ALG}_{k}(\sigma)}{\mathrm{OPT}_{h}(\sigma)} \approx \text { constant? }
$$

Known results for the (h, k)-server problem

Uniform metrics:

- Corresponds to the paging problem
- Tight bounds of $k /(k-h+1)$ by Sleator, Tarjan '85
- This equals 2 for $k=2 h$ and approaches 1 for $k \rightarrow \infty$
- Later generalized to weighted star metrics by Young '94

Known results for the (h, k)-server problem

Uniform metrics:

- Corresponds to the paging problem
- Tight bounds of $k /(k-h+1)$ by Sleator, Tarjan ' 85
- This equals 2 for $k=2 h$ and approaches 1 for $k \rightarrow \infty$
- Later generalized to weighted star metrics by Young '94

General metrics:

- Lower bound of 2 irrespective of k by Bar Noy and Schieber for the line
- Upper bound for WFA by Koutsoupias '99:
- $2 h$ for general metrics and $h+1$ for line irrespective of k
- No o(h) result known, even if $k \rightarrow \infty$

Our results

Lower bound of $\Omega(h)$ for DC and WFA:

- In depth-2 trees for DC and depth-3 trees for WFA

Our results

Lower bound of $\Omega(h)$ for DC and WFA:

- In depth-2 trees for DC and depth-3 trees for WFA

General lower bound for depth-2 trees:

- No algorithm can achieve a ratio better than 2.4 irrespective of k

Our results

Lower bound of $\Omega(h)$ for DC and WFA:

- In depth-2 trees for DC and depth-3 trees for WFA

General lower bound for depth-2 trees:

- No algorithm can achieve a ratio better than 2.4 irrespective of k

New (deterministic) algorithm for bounded-depth trees:

- Its competitive ratio in a depth- d tree is

$$
\begin{array}{lr}
O\left(d \cdot 2^{d+1}\right) & \text { for } k \rightarrow \infty \\
O\left(d \cdot(2 d / \epsilon)^{d+1}\right) & \text { for } k=(1+\epsilon) h
\end{array}
$$

- First bound sublinear in h for a metric which is not uniform

Roadmap for the rest of this talk

1. Definition of the depth-d trees
2. Lesson to learn from the lower bounds for DC and WFA
3. Description of our algorithm
4. New potential function based on Excess and Deficiency
5. Open problems

Trees of bounded depth

Depth-d tree:

- Rooted tree
- Each path from root to leaf has d edges
- Requests only in leaves

Trees of bounded depth

level d

Elementary subtrees:

- Subtrees of depth one
- They form a uniform metric
- In uniform metric: if $k \geqslant 2 h$, we can be 2-competitive (ST'85)

Drawbacks of DC and WFA

Drawbacks of DC and WFA

- DC and WFA bring help too slowly
- If cost of x is incurred in the subtree R, DC moves s by $\approx x / k_{R}$

Drawbacks of DC and WFA

- DC and WFA bring help too slowly
- If cost of x is incurred in the subtree R, DC moves s by $\approx x / k_{R}$
- Our algorithm is more aggressive: we move s by $\approx x$

New algorithm: Paradigm

level d

Basic paradigm of the algorithm:

- Similar to DC by Chrobak et al.
- Servers are allowed to stay anywhere
- We move servers adjacent to the request

New algorithm: Paradigm

level d

Basic paradigm of the algorithm:

- Each adjacent server keeps moving towards the request until
- its path to the request is blocked by some other server
- request is served
- Key part of our algorithm: careful choice of the speeds

Algorithm: Phase 1

- One unit of speed divided between the servers in the elementary subtree containing the requested point
- Second unit of speed is divided to the other incoming servers proportionally to the number of servers they represent

Algorithm: Phase 2

- The descending server is moving with the speed 1
- Second unit of speed is divided to the other incoming servers proportionally to the number of servers they represent

Analysis: New potential function

Excess and deficiency:

- Let T be a subtree rooted at a vertex at level i
- k_{T} : number of ALG's servers in T
- h_{T} : number of OPT's servers in T
- If $\mathrm{k}_{\mathrm{T}} \geqslant \beta h_{\mathrm{T}}, \mathrm{T}$ is excessive; otherwise it is deficient
- Excess threshold β depends on i and on k / h
- $\beta=2$ for elementary subtrees if k / h is large
- For subtrees rooted in higher levels β increases geometrically

Analysis: New potential function

The new potential:

$$
\Phi=\sum_{i=1}^{\mathrm{d}}\left(\alpha_{i}^{\mathrm{E}} \mathrm{E}_{i}+\alpha_{i}^{\mathrm{D}} \mathrm{D}_{i}\right)
$$

- E_{i} and D_{i} measure the excess/deficiency in subtrees rooted at level i
- α_{i}^{E} and α_{i}^{D} are coefficients (dependent only on i and k / h)

Core of the analysis:

- Proof that ALG always decreases enough excess or deficiency

Open problems

Is dependence on d necessary?

- A constant independent on d would imply a randomized $\mathrm{O}(\log n)$-competitive algorithm for any metric on n points

Can we achieve a similar result for other metrics?

- e.g. line would be very interesting
- Current best is $\frac{k}{k+1}(h+1)$ for DC

Is there a metric which allows a lower bound bigger than 2.4?

- Maybe even for trees of higher depth

Thank You

Can the ratio become worse with k increasing?

Can the ratio become worse with k increasing?

Answer: Yes!

Can the ratio become worse with k increasing?

Answer: Yes!

Performance of DC algorithm in the line and trees:

- In the standard setting optimal for line and trees
- Competitive ratio for DC is precisely

$$
\frac{k}{k+1}(h+1)
$$

- Equals h for $k=h$, and increases towards $h+1$ for $k \rightarrow \infty$

Can the ratio become worse with k increasing?

Answer: Yes!

Performance of DC algorithm in the line and trees:

- In the standard setting optimal for line and trees
- Competitive ratio for DC is precisely

$$
\frac{k}{k+1}(h+1)
$$

- Equals h for $k=h$, and increases towards $h+1$ for $k \rightarrow \infty$

Competitive ratio of WFA in the line:

- Equals h for $k=h$, but increases to $h+1 / 3$ for $k=2 h$.

