Competitive Algorithms for Generalized k-Server in Uniform Metrics

Nikhil Bansal, <u>Marek Eliáš</u>, Grigorios Koumoutsos, Jesper Nederlof

TU Eindhoven

Bansal, Eliáš, Koumoutsos, Nederlof: Generalized k-Server Problem

- ▶ one of the central problems in Online Optimization
- studied intensively for several decades
- its study contributed many techniques to Online Algorithms

- k servers in given metric space
- sequence of requests received online
- ▶ target: minimize the distance travelled by the servers

- k servers in given metric space
- sequence of requests received online
- target: minimize the distance travelled by the servers

- k servers in given metric space
- sequence of requests received online
- ▶ target: minimize the distance travelled by the servers

- k servers in given metric space
- sequence of requests received online
- ▶ target: minimize the distance travelled by the servers

- k servers in given metric space
- sequence of requests received online
- target: minimize the distance travelled by the servers

- k servers in given metric space
- sequence of requests received online
- target: minimize the distance travelled by the servers

- k servers in given metric space
- sequence of requests received online
- target: minimize the distance travelled by the servers

- k servers in given metric space
- sequence of requests received online
- target: minimize the distance travelled by the servers

Competitive ratio for k-server problem:

	upper bound	lower bound
deterministic:	2k - 1	k
randomized:	log ⁶ k	log k log log k

Competitive ratio for k-server problem:

	upper bound	lower bound
deterministic:	2k - 1	k
randomized:	$\log^{6} k$	log k log log k

Natural variants not yet understood:

- e.g. weighted k-server, CNN, generalized k-server
- existing proofs for k-server do not extend
- several successful k-server algorithms not competitive

- servers have weights: w_1, w_2, \ldots, w_k
- ▶ target: minimize the weighted distance travelled
 - if server i moves by distance D, we pay $D \cdot w_i$

- servers have weights: w_1, w_2, \ldots, w_k
- ▶ target: minimize the weighted distance travelled
 - if server i moves by distance D, we pay $D \cdot w_i$

- servers have weights: w_1, w_2, \ldots, w_k
- ▶ target: minimize the weighted distance travelled
 - if server i moves by distance D, we pay $D \cdot w_i$

- servers have weights: w_1, w_2, \ldots, w_k
- ▶ target: minimize the weighted distance travelled
 - if server i moves by distance D, we pay $D \cdot w_i$

- servers have weights: w_1, w_2, \ldots, w_k
- ▶ target: minimize the weighted distance travelled
 - if server i moves by distance D, we pay $D \cdot w_i$

- servers have weights: w_1, w_2, \ldots, w_k
- target: minimize the weighted distance travelled
 - if server i moves by distance D, we pay $D \cdot w_i$

- 2 servers in a line: already non-trivial no memoryless algorithm competitive [Chrobak, Sgall '04]
 - for standard k-server, harmonic algorithm works

Known results

_

- upper bounds only for special cases
 - ▶ for uniform metrics by Fiat and Ricklin '94
 - for k = 2 by Sitters and Stougie '06
- ▶ lower bound: $2^{2^{\Omega(k)}}$ by Bansal et al. FOCS'17

	upper bound	lower bound
uniform metrics:	2 ^{2^{O(k)}}	$2^{2^{\Omega(k)}}$
k = 2:	O(1)	$\Omega(1)$
k > 2:	??	$2^{2^{\Omega(k)}}$

Example 2: CNN problem [Koutsoupias, Taylor '04]

- k servers, each moving in its own line metric
- for k = 2: moving live-broadcast vehicles in a city
- target: minimize the distance travelled by the servers

Example 2: CNN problem [Koutsoupias, Taylor '04]

- k servers, each moving in its own line metric
- for k = 2: moving live-broadcast vehicles in a city
- target: minimize the distance travelled by the servers

Bansal, Eliáš, Koumoutsos, Nederlof: Generalized k-Server Problem

Example 2: CNN problem [Koutsoupias, Taylor '04]

- k servers, each moving in its own line metric
- for k = 2: moving live-broadcast vehicles in a city
- target: minimize the distance travelled by the servers

Bansal, Eliáš, Koumoutsos, Nederlof: Generalized k-Server Problem

Known results:

- upper bound for k = 2 by Sitters and Stougie '06
- doubly-exponential lower bound by Bansal et al. '17

	upper bound	lower bound
k = 2:	O(1)	$\Omega(1)$
k > 2:	??	$2^{2^{\Omega(k)}}$

- each server moves in its own metric: $(M_1, d_1), \ldots, (M_k, d_k)$
- ▶ at time t: we receive request $(r_1^t, ..., r_k^t)$, $r_i^t \in M_i$
 - ALG has to select some server i and move it to r^t_i.
- target: minimize the distance travelled by the servers

- each server moves in its own metric: $(M_1, d_1), \ldots, (M_k, d_k)$
- ▶ at time t: we receive request (r_1^t, \ldots, r_k^t) , $r_i^t \in M_i$
 - ALG has to select some server i and move it to r^t_i.
- target: minimize the distance travelled by the servers

- each server moves in its own metric: $(M_1, d_1), \ldots, (M_k, d_k)$
- ▶ at time t: we receive request (r_1^t, \ldots, r_k^t) , $r_i^t \in M_i$
 - ALG has to select some server i and move it to r^t_i.
- target: minimize the distance travelled by the servers

- each server moves in its own metric: $(M_1, d_1), \ldots, (M_k, d_k)$
- ▶ at time t: we receive request (r_1^t, \ldots, r_k^t) , $r_i^t \in M_i$
 - ALG has to select some server i and move it to r^t_i.
- target: minimize the distance travelled by the servers

- all metrics are the same: $M_1 = \cdots = M_k$
- \blacktriangleright each request has all coordinates equal: $r^t = (\sigma^t, \ldots, \sigma^t)$
 - σ^t is then the request for the k-server instance

- all metrics are the same: $M_1 = \cdots = M_k$
- ► each request has all coordinates equal: $r^t = (\sigma^t, ..., \sigma^t)$
 - σ^t is then the request for the k-server instance

The weighted k-server problem

- ▶ for each i, $M_i = w_i M$ (a scaled copy of some fixed M)
- \blacktriangleright each request has all coordinates equal: $r^t = (\sigma^t, \ldots, \sigma^t)$

- ▶ all metrics are the same: $M_1 = \cdots = M_k$
- ► each request has all coordinates equal: $r^t = (\sigma^t, ..., \sigma^t)$
 - σ^t is then the request for the k-server instance

The weighted k-server problem

- ▶ for each i, $M_i = w_i M$ (a scaled copy of some fixed M)
- ▶ each request has all coordinates equal: $r^t = (\sigma^t, ..., \sigma^t)$

The CNN problem

each M_i is a real line

- ▶ all metrics are the same: $M_1 = \cdots = M_k$
- ► each request has all coordinates equal: $r^t = (\sigma^t, ..., \sigma^t)$
 - σ^t is then the request for the k-server instance

The weighted k-server problem

- ▶ for each i, $M_i = w_i M$ (a scaled copy of some fixed M)
- ▶ each request has all coordinates equal: $r^t = (\sigma^t, ..., \sigma^t)$

The CNN problem

each M_i is a real line

• for standard k-server, the competitive ratio is O(k)

• for standard k-server, the competitive ratio is O(k)

Useful definition

▶ state
$$q = (q_1, ..., q_k)$$
: server i is located at $q_i \in M_i$

2^k possible states

Useful definition

- \blacktriangleright state $q = (q_1, \ldots, q_k)$: server i is located at $q_i \in M_i$
- 2^k possible states
- q is feasible w.r.t. r^t : $q_i = r_i^t$ for some i

Generalized k-server: simple lower bound

- \blacktriangleright ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- \blacktriangleright ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- \blacktriangleright ALG moves to $2^k 1$ different states
- > one state remains feasible during the whole sequence

- ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- ▶ red state: unfeasible OPT cannot stay there
- black state: feasible for all the requests so far

- ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- ▶ red state: unfeasible OPT cannot stay there
- black state: feasible for all the requests so far

- \blacktriangleright ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- ▶ red state: unfeasible OPT cannot stay there
- black state: feasible for all the requests so far

- \blacktriangleright ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- ▶ red state: unfeasible OPT cannot stay there
- black state: feasible for all the requests so far

- \blacktriangleright ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- ▶ red state: unfeasible OPT cannot stay there
- black state: feasible for all the requests so far

- ALG moves to $2^k 1$ different states
- one state remains feasible during the whole sequence

- ▶ red state: unfeasible OPT cannot stay there
- black state: feasible for all the requests so far
- solution for OPT: in the beginning, move to (0, 0, 1) and stay there

Lower bounds

Lower bounds

- ▶ $2^k 1$ by Koutsoupias and Taylor '04
- ► $2^{2^{\Omega(k)}}$ from weighted k-server [Bansal et al. '17]

Lower bounds

- ▶ $2^k 1$ by Koutsoupias and Taylor '04
- ► $2^{2^{\Omega(k)}}$ from weighted k-server [Bansal et al. '17]

Upper bounds

- k = 2: O(1) by Sitters and Stougie '06
- \blacktriangleright k > 2: no upper bound known
 - ▶ not even for a special class of metrics

▶ each M_i , for $i \in [k]$, is uniform, i.e., $d_i(x, y) = 1$

	upper bound	lower bound
deterministic:	k2 ^k	$2^{k} - 1$
randomized:	k ³ log k	$k/\log^2 k$

▶ each M_i , for $i \in [k]$, is uniform, i.e., $d_i(x, y) = 1$

	upper bound	lower bound
deterministic:	k2 ^k	$2^{k} - 1$
randomized:	k ³ log k	$k/\log^2 k$

Case of weighted (or scaled) uniform metrics

▶ each M_i is a scaled uniform metric, i.e., d_i(x, y) = w_i
 ▶ 2^{2^{k+3}}-competitive algorithm

▶ each M_i , for $i \in [k]$, is uniform, i.e., $d_i(x, y) = 1$

	upper bound	lower bound
deterministic:	k2 ^k	$2^{k} - 1$
randomized:	k ³ log k	$k/\log^2 k$

Case of weighted (or scaled) uniform metrics

- ▶ each M_i is a scaled uniform metric, i.e., $d_i(x, y) = w_i$
- ► 2^{2^{k+3}}-competitive algorithm
- extension of algorithm by Fiat and Ricklin '94
- ► tight result: LB of 2^{2Ω(k)} [Bansal et al. '17]

 \blacktriangleright each $M_i, \text{ for } i \in [k], \text{ is uniform, i.e., } d_i(x,y) = 1$

talk		upper bound	lower bound
This	deterministic:	k2 ^k	$2^{k} - 1$
	randomized:	k ³ log k	k/ log ² k

Case of weighted (or scaled) uniform metrics

- ▶ each M_i is a scaled uniform metric, i.e., $d_i(x, y) = w_i$
- ► 2^{2^{k+3}}-competitive algorithm
- extension of algorithm by Fiat and Ricklin '94
- ► tight result: LB of 2^{2Ω(k)} [Bansal et al. '17]

- ALG works in phases
- ▶ in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q\in F$

- ALG works in phases
- ▶ in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

- ALG works in phases
- in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

• set $F = M_1 \times M_2 \times \cdots \times M_k$ (all possible states)

To server request r^t :

- remove from F all states unfeasible w.r.t. r^t
- ► move to an arbitrary q ∈ F

- ALG works in phases
- in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

• set $F = M_1 \times M_2 \times \cdots \times M_k$ (all possible states)

To server request r^t :

- remove from F all states unfeasible w.r.t. r^t
- ► move to an arbitrary q ∈ F

- ALG works in phases
- in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

• set $F = M_1 \times M_2 \times \cdots \times M_k$ (all possible states)

To server request r^t :

- remove from F all states unfeasible w.r.t. r^t
- move to an arbitrary $q \in F$

- ALG works in phases
- in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

• set $F = M_1 \times M_2 \times \cdots \times M_k$ (all possible states)

To server request r^t :

- remove from F all states unfeasible w.r.t. r^t
- move to an arbitrary $q \in F$

- ALG works in phases
- in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

• set $F = M_1 \times M_2 \times \cdots \times M_k$ (all possible states)

To server request r^t:

- remove from F all states unfeasible w.r.t. r^t
- ► move to an arbitrary q ∈ F

- ALG works in phases
- in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

• set $F = M_1 \times M_2 \times \cdots \times M_k$ (all possible states)

To server request r^t:

- remove from F all states unfeasible w.r.t. r^t
- move to an arbitrary $q \in F$
- once $F = \emptyset$, start a new phase

- ALG works in phases
- in each phase: maintains set F of feasible states
- \blacktriangleright always moves to some $q \in F$

Beginning of the phase:

• set $F = M_1 \times M_2 \times \cdots \times M_k$ (all possible states)

To server request r^t :

- remove from F all states unfeasible w.r.t. r^t
- move to an arbitrary $q \in F$
- once $F = \emptyset$, start a new phase

Lemma. During any phase, $F = \emptyset$ after 2^k moves by ALG.

 \blacktriangleright even if $|M_{\mathfrak{i}}|\gg 2$

Lemma. During any phase, $F = \emptyset$ after 2^k moves by ALG.

- even if $|M_i| \gg 2$
- proof using polynomial method

Lemma. During any phase, $F = \emptyset$ after 2^k moves by ALG.

- even if $|M_i| \gg 2$
- proof using polynomial method
- \blacktriangleright assume $M_i = \{1, 2, \ldots, n\}$ for each i
- we define a feasibility polynomial of 2k variables

► state
$$q = (q_1, \dots, q_k)$$

► request $r^t = (r_1^t, \dots, r_k^t)$

$$p(q, r^t) = \prod_{i=1}^k (q_i - r_i^t)$$

Lemma. During any phase, $F = \emptyset$ after 2^k moves by ALG.

• even if
$$|M_i| \gg 2$$

- proof using polynomial method
- ▶ assume $M_i = \{1, 2, ..., n\}$ for each i
- we define a feasibility polynomial of 2k variables

► state q = (q₁,..., q_k)
► request r^t = (r₁^t,..., r_k^t)

$$p(q, rt) = \prod_{i=1}^{k} (q_i - r_i^t)$$

▶ $p(q, r^t) = 0$ if q is feasible w.r.t. r^t , i.e., $q_i = r_i^t$ for some i ▶ $p(q, r^t) \neq 0$ otherwise

▶
$$r^1, r^2, ..., r^{\ell}$$
 — requests
▶ $q^1, q^2, ..., q^{\ell}$ — states of the algorithm
▶ matrix $M \in \mathbb{R}^{\ell \times \ell}$: $M[t, t'] = p(q^t, r^{t'})$
 $q^1 \quad q^2 \quad q^3 \quad ... \quad q^{\ell}$
 $r^1 \begin{pmatrix} \times & 0 \quad 0 \quad \cdots & 0 \\ \cdot & \times & 0 \quad \cdots & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \infty \end{pmatrix}$

$$M = r^3 \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \infty \end{pmatrix}$$
substituting the states of the algorithm of the algo

►
$$r^1, r^2, ..., r^\ell$$
 — requests
► $q^1, q^2, ..., q^\ell$ — states of the algorithm
► matrix $M \in \mathbb{R}^{\ell \times \ell}$: $M[t, t'] = p(q^t, r^{t'})$
 $q^1 \quad q^2 \quad q^3 \quad ... \quad q^\ell$
 $r^1 \quad \begin{pmatrix} \times & 0 & 0 & \cdots & 0 \\ & \times & 0 & \cdots & 0 \\ & & \times & \ddots & 0 \\ & & & \ddots & \ddots & 0 \\ & & & & \ddots & & x \end{pmatrix}$
states
to server request r^t :
► remove from F all states
unfeasible w.r.t. r^t
► move to some $q^{t+1} \in F$

- ▶ *M* has zeros above the diagonal
 - \blacktriangleright ALG always moves to some $q^{t+1} \in F$

During a fixed phase:

> r¹, r², ..., r^ℓ — requests
> q¹, q², ..., q^ℓ — states of the algorithm
> matrix
$$M \in \mathbb{R}^{\ell \times \ell}$$
: $M[t, t'] = p(q^t, r^{t'})$

 $q^1 q^2 q^3 ... q^{\ell}$
 $r^1 q^2 q^3 ... q^{\ell}$
 $x 0 0 \cdots 0$
 $x 0 \cdots$

- M has zeros above the diagonal
- M non-zero entries in the diagonal
 - w.l.o.g. each request forces ALG to move

F

During a fixed phase:

- M has zeros above the diagonal
- M non-zero entries in the diagonal

 \Rightarrow M has full rank

ŝ.

 r^t

Crucial claim:

▶ Rank of M is at most 2^k.

Crucial claim:

▶ Rank of M is at most 2^k.

Proof:

• M has full rank \Rightarrow length of the phase is at most 2^k
End of the proof

Cost of ALG per phase

- \blacktriangleright ALG moves at most 2^k times, each move costs at most k
- ► $cost(ALG) \leq k2^k$

Cost of OPT per phase

- $F = \emptyset$ at the end of each phase
 - no state can serve all requests of the phase
- ► $cost(OPT) \ge 1$

Competitive ratio

$$\frac{\mathsf{cost}(\mathsf{ALG})}{\mathsf{cost}(\mathsf{OPT})} \leqslant k2^k$$

Naïve algorithm

- ► F: the set of feasible states in the current phase
- \blacktriangleright move to $q\in F$ chosen uniformly at random
- $\triangleright \log n$ factor in the competitive ratio

Naïve algorithm

- ► F: the set of feasible states in the current phase
- move to $q \in F$ chosen uniformly at random
- log n factor in the competitive ratio

We need more structure

- ▶ we reprezent F as a collection of subspaces of feasible states
- this helps to guide the alogrithm's decisions
- random choice is done over subspaces instead of states

Concluding remarks

	upper bound	lower bound
uniform (deterministic):	k2 ^k	$2^{k} - 1$
uniform (randomized):	$k^3 \log k$	$k/\log^2 k$
weighted uniform:	$2^{2^{O(k)}}$	$2^{2^{\Omega(k)}}$

 \blacktriangleright no upper bounds known for other metrics whenever k>2

Concluding remarks

	upper bound	lower bound
uniform (deterministic):	k2 ^k	$2^{k} - 1$
uniform (randomized):	$k^3 \log k$	$k/\log^2 k$
weighted uniform:	$2^{2^{O(k)}}$	$2^{2^{\Omega(k)}}$

 \blacktriangleright no upper bounds known for other metrics whenever k>2

▶ e.g. line metric

Concluding remarks

	upper bound	lower bound
uniform (deterministic):	k2 ^k	$2^{k} - 1$
uniform (randomized):	k ³ log k	$k/\log^2 k$
weighted uniform:	$2^{2^{O(k)}}$	$2^{2^{\Omega(k)}}$

no upper bounds known for other metrics whenever k > 2
e.g. line metric

Small announcement

I am graduating this year and I am looking for a postdoc