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Private network analysis

Social networks:

I contain valuable information about our societies

I stability of the society, information spread

Network analysis in a private manner?
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A synthetic graph approximating all cuts

Input:

I graph G(V ,E) with edge-weights w

Output:

I di�erentially private graph G ′ with weights w ′

I for any I, J ⊂ V : w ′(I, J) ≈ w(I, J)
I i.e., preserving weight of (I, J)-cuts
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A synthetic graph approximating all cuts

Input:

I graph G(V ,E) with edge-weights w

Output:

I di�erentially private graph G ′ with weights w ′

I for any I, J ⊂ V : w ′(I, J) ≈ w(I, J)
I i.e., preserving weight of (I, J)-cuts

Edge-level privacy:

I neighboring graphs di�er by a single edge
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Known results

Randomized response

I Gupta, Roth, Ullman'12

I w ′e = we + ζe, where ζe ∼ Lap(1/ε) i.i.d.

I additive error: O(n3/2)

I useful only for graphs with � n3/2 edges

G

+

Kn

ζe ∼ Lap(1/ε)

Other results

I Blocki, Blum, Datta, She�et '12; Upadhyay '13
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Known results

Exponential mechanism: Naïve version

I score Θ(exp(n2)) possible output graphs by their error

I return a sample from this distribution

I error proportional to n2

Exponential mechanism: Improved version

I fundamental result: existence of sparsi�ers
I preserve cut sizes1 with a small multiplicative error
I number of edges: O(n)
I only exp(O(n logn)) possible sparsi�ers!

I additive error: n logn, multiplicative error due to sparsi�cation

I Drawback: exponential time!

1Only for cuts of type (S,V \ S)
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Our result

Input:

I graph G∗ s.t.
∑
ew
∗
e = m

Output:

I (ε, δ)-DP synthetic graph G with weights w

I with probability (1− γ):
I for all I, J ⊂ V: |w(I, J) −w∗(I, J)| 6 �O

(√
mn
)

I i.e. purely additive error

I �rst polytime alg. with non-trivial guarantee for sparse graphs

Lower bounds for purely additive error

Ω(
√
mn/ε)
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Should we use sparsi�cation?

Algorithm by Spielman and Srivastava

I sample edges by their e�ective resistance

I number of edges: O(α−2 n logn)

I multiplicative error: (1+ α)

Problem:

I only existing edges are sampled

I edge e in the output ⇒ e was present in the input!

I not private
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Our approach

Find cut approximator using convex optimization

I mirror descent

I iterative technique

I we can choose target precision

Make each iteration private

I mirror descent only needs gradient as an input

I sanitize each gradient evaluation

Bound the total privacy

I Advanced composition theorem
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Convex objective

I input graph G∗: weights w∗, adjacency matrix A∗

I current solution G: weights w, adjacency matrix A

I let D = A−A∗

Grothendieck problem:

F(D) = max

{(
0 D

D 0

)
• X; X is symmetric,X � 0,Xii = 1 ∀i

}
I constant-factor approximation of maxI,J⊂V

∣∣w(I, J)−w∗(I, J)
∣∣

I Xi,j ∈ [−1, 1] for each i, j
X1/2
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I let D = A−A∗

Grothendieck problem:

F(D) = max

{(
0 D

D 0

)
• X; X is symmetric,X � 0,Xii = 1 ∀i

}
I constant-factor approximation of maxI,J⊂V

∣∣w(I, J)−w∗(I, J)
∣∣

I Xi,j ∈ [−1, 1] for each i, j

Properties:

I F(D) is convex

I ∇F(D) = X∗

X1/2
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Minimization problem

Optimization problem:

min

{
F
(
A(w)−A∗

)
;
∑
e

we = m

}

I minimization of convex function

I bounded gradient: (∇F(D))i,j ∈ [−1, 1]

Mirror descent theorem:

I after T = m/n iterations:

F
(
A(w) −A∗

)
6 �O(

√
mn)
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Stochastic gradient

Stochastic gradient: JL transform

I release X1/2ζ, where ζ ∼ N(0, I)

I stochastic gradient: SX = X1/2ζζTX1/2

I E[SX] = X

X1/2

ζ

Privacy of the gradient at iteration t:

X = ∇F(A(w(t))−A∗) and �X = ∇F(A(w(t))− �A∗)

I X1/2ζ and �X1/2ζ have similar distribution:

pdfX(x) 6 e
ε0 · pdf �X(x) w.p. (1− δ0)

ε0 = O(log
1

δ0
) ·
√

trX−1(�X− X)X−1(�X− X)

I this implies (ε0, δ0)-DP
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Regularization

F(D) = max

{(
0 D

D 0

)
•X+Ψ(X); X is symmetric,X � 0,Xii = 1

}

I Ψ(X) = λ log detX

I λ determines the stability but also error

Claim:

I If A∗ and �A∗ di�er in a single edge, then√
trX−1(�X− X)X−1(�X− X) 6 O(1/λ)

I crucial property of Ψ: D2Ψ(X)[E,E] = −λ trX−1EX−1E

Eliá², Kapralov, Kulkarni, Lee: Di�erentially Private Release of Synthetic Graphs slide: 12/15



Regularization

F(D) = max

{(
0 D

D 0

)
•X+Ψ(X); X is symmetric,X � 0,Xii = 1

}
I Ψ(X) = λ log detX

I λ determines the stability but also error

Claim:

I If A∗ and �A∗ di�er in a single edge, then√
trX−1(�X− X)X−1(�X− X) 6 O(1/λ)

I crucial property of Ψ: D2Ψ(X)[E,E] = −λ trX−1EX−1E

Eliá², Kapralov, Kulkarni, Lee: Di�erentially Private Release of Synthetic Graphs slide: 12/15



Regularization

F(D) = max

{(
0 D

D 0

)
•X+Ψ(X); X is symmetric,X � 0,Xii = 1

}
I Ψ(X) = λ log detX

I λ determines the stability but also error

Claim:

I If A∗ and �A∗ di�er in a single edge, then√
trX−1(�X− X)X−1(�X− X) 6 O(1/λ)

I crucial property of Ψ: D2Ψ(X)[E,E] = −λ trX−1EX−1E

Eliá², Kapralov, Kulkarni, Lee: Di�erentially Private Release of Synthetic Graphs slide: 12/15



Summing up

To get (ε, δ)-DP:

I we choose

λ ≈ ε−1
√
m/n

We solve

F(D) = max

{(
0 D

D 0

)
•X+λ log detX; X symmetric PSD,Xii = 1

}

min

{
F
(
A−A(w)

)
;
∑
e

we = m

}
I using T = m/n iterations of mirror descent

I privacy (by Advanced composition thm): 1
λ

√
T = ε

I error due to low number of iterations: �O(
√
mn)

I error due to regularization: λn logn 6 �O(ε−1
√
mn)
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Open problems

Matching the guarantee of the exponential mechanism

I multiplicative error (1+ η), additive error O(n logn)

I in polynomial time?

Node level privacy

I neighboring graphs di�er in whole vertex neighborhoods

I any upper or lower bounds?

Is our result implementable?

I using some convex optimization tool
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Questions?

https://elias.ba30.eu/
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