## Differentially Private Release of Synthetic Graphs

## Marek Eliáš EPFL

## Joint work with Michael Kapralov, Janardhan Kulkarni, Yin Tat Lee



Eliáš, Kapralov, Kulkarni, Lee: Differentially Private Release of Synthetic Graphs

# Private network analysis



## Private network analysis



#### Social networks:

- contain valuable information about our societies
- stability of the society, information spread

# Private network analysis



#### Social networks:

- contain valuable information about our societies
- stability of the society, information spread

### Network analysis in a private manner?

# A synthetic graph approximating all cuts

#### Input:

• graph G(V, E) with edge-weights w

- differentially private graph G' with weights w'
- ▶ for any I,  $J \subset V$ :  $w'(I, J) \approx w(I, J)$ 
  - ▶ i.e., preserving weight of (I, J)-cuts

#### Input:

• graph G(V, E) with edge-weights w

## Output:

- differentially private graph G' with weights w'
- ▶ for any I,  $J \subset V$ :  $w'(I, J) \approx w(I, J)$

▶ i.e., preserving weight of (I, J)-cuts



#### Input:

• graph G(V, E) with edge-weights w

- differentially private graph G' with weights w'
- ▶ for any I,  $J \subset V$ :  $w'(I, J) \approx w(I, J)$ 
  - ▶ i.e., preserving weight of (I, J)-cuts



#### Input:

• graph G(V, E) with edge-weights w

## Output:

- differentially private graph G' with weights w'
- ▶ for any I,  $J \subset V$ :  $w'(I, J) \approx w(I, J)$ 
  - ▶ i.e., preserving weight of (I, J)-cuts

## Edge-level privacy:

neighboring graphs differ by a single edge

## Known results

#### Randomized response

- ▶ Gupta, Roth, Ullman'12
- $w'_e = w_e + \zeta_e$ , where  $\zeta_e \sim \text{Lap}(1/\epsilon)$  i.i.d.
- additive error:  $O(n^{3/2})$
- $\blacktriangleright$  useful only for graphs with  $\gg n^{3/2}$  edges



## Known results

#### Randomized response

- ▶ Gupta, Roth, Ullman'12
- $w'_e = w_e + \zeta_e$ , where  $\zeta_e \sim \text{Lap}(1/\epsilon)$  i.i.d.
- additive error:  $O(n^{3/2})$
- $\blacktriangleright$  useful only for graphs with  $\gg n^{3/2}$  edges



#### Other results

▶ Blocki, Blum, Datta, Sheffet '12; Upadhyay '13

### Exponential mechanism: Naïve version

- ▶ score  $\Theta(\exp(n^2))$  possible output graphs by their error
- return a sample from this distribution
- error proportional to  $n^2$

<sup>1</sup>Only for cuts of type  $(S, V \setminus S)$ 

Eliáš, Kapralov, Kulkarni, Lee: Differentially Private Release of Synthetic Graphs

### Exponential mechanism: Naïve version

- ▶ score  $\Theta(\exp(n^2))$  possible output graphs by their error
- return a sample from this distribution
- error proportional to  $n^2$

## Exponential mechanism: Improved version

- fundamental result: existence of sparsifiers
  - preserve cut sizes<sup>1</sup> with a small multiplicative error
  - number of edges: O(n)

<sup>1</sup>Only for cuts of type  $(S, V \setminus S)$ 

Eliáš, Kapralov, Kulkarni, Lee: Differentially Private Release of Synthetic Graphs

### Exponential mechanism: Naïve version

- ▶ score  $\Theta(\exp(n^2))$  possible output graphs by their error
- return a sample from this distribution
- error proportional to  $n^2$

## Exponential mechanism: Improved version

- fundamental result: existence of sparsifiers
  - preserve cut sizes<sup>1</sup> with a small multiplicative error
  - number of edges: O(n)
  - only exp(O(n log n)) possible sparsifiers!
- $\blacktriangleright$  additive error:  $n \log n$ , multiplicative error due to sparsification
- Drawback: exponential time!

<sup>&</sup>lt;sup>1</sup>Only for cuts of type  $(S, V \setminus S)$ 

#### Input:

• graph G\* s.t. 
$$\sum_e w_e^* = \mathfrak{m}$$

- $(\varepsilon, \delta)$ -DP synthetic graph G with weights w
- with probability  $(1 \gamma)$ :
  - ▶ for all I, J ⊂ V:  $|w(I, J) w^*(I, J)| \leq \tilde{O}(\sqrt{mn})$
- i.e. purely additive error

#### Input:

• graph G\* s.t. 
$$\sum_e w_e^* = \mathfrak{m}$$

- ▶  $(\varepsilon, \delta)$ -DP synthetic graph G with weights w
- with probability  $(1 \gamma)$ :
  - ► for all I, J ⊂ V:  $|w(I, J) w^*(I, J)| \leq O(\sqrt{mn/\epsilon} \cdot \log^2(n/\delta))$
- i.e. purely additive error

#### Input:

• graph G\* s.t. 
$$\sum_e w_e^* = \mathfrak{m}$$

- $(\epsilon, \delta)$ -DP synthetic graph G with weights w
- with probability  $(1 \gamma)$ :
  - ► for all I, J ⊂ V:  $|w(I, J) w^*(I, J)| \leq O(\sqrt{mn/\varepsilon} \cdot \log^2(n/\delta))$
- i.e. purely additive error
- ▶ first polytime alg. with non-trivial guarantee for sparse graphs

#### Input:

• graph G\* s.t.  $\sum_{e} w_{e}^{*} = m$ 

### Output:

- $(\epsilon, \delta)$ -DP synthetic graph G with weights w
- with probability  $(1 \gamma)$ :
  - ► for all I, J ⊂ V:  $|w(I, J) w^*(I, J)| \leq O(\sqrt{mn/\varepsilon} \cdot \log^2(n/\delta))$
- i.e. purely additive error
- first polytime alg. with non-trivial guarantee for sparse graphs

## Lower bounds for purely additive error

 $\Omega(\sqrt{mn/\epsilon})$ 

## Algorithm by Spielman and Srivastava

- sample edges by their effective resistance
- number of edges:  $O(\alpha^{-2} n \log n)$
- multiplicative error:  $(1 + \alpha)$

## Algorithm by Spielman and Srivastava

- sample edges by their effective resistance
- ▶ number of edges:  $O(\alpha^{-2} n \log n)$
- multiplicative error:  $(1 + \alpha)$

### Problem:

- only existing edges are sampled
- edge e in the output  $\Rightarrow e$  was present in the input!

#### not private

## Find cut approximator using convex optimization

- mirror descent
- iterative technique
- we can choose target precision

## Find cut approximator using convex optimization

- mirror descent
- iterative technique
- we can choose target precision

### Make each iteration private

- mirror descent only needs gradient as an input
- sanitize each gradient evaluation

## Find cut approximator using convex optimization

- mirror descent
- iterative technique
- we can choose target precision

### Make each iteration private

- mirror descent only needs gradient as an input
- sanitize each gradient evaluation

### Bound the total privacy

Advanced composition theorem

## **Convex objective**

- ▶ input graph  $G^*$ : weights  $w^*$ , adjacency matrix  $A^*$
- current solution G: weights w, adjacency matrix A

► let 
$$D = A - A^*$$

## Convex objective

- ▶ input graph  $G^*$ : weights  $w^*$ , adjacency matrix  $A^*$
- current solution G: weights w, adjacency matrix A

► let 
$$D = A - A^*$$

### Grothendieck problem:

$$F(D) = \max \left\{ \begin{array}{cc} 0 & D \\ D & 0 \end{array} \right) \bullet X; \quad X \text{ is symmetric, } X \succeq 0, X_{\texttt{ii}} = 1 \; \forall \texttt{i} \right\}$$

▶ constant-factor approximation of  $\max_{I,J \subset V} |w(I,J) - w^*(I,J)|$ 

▶ 
$$X_{i,j} \in [-1, 1]$$
 for each  $i, j$ 



## Convex objective

- ▶ input graph  $G^*$ : weights  $w^*$ , adjacency matrix  $A^*$
- current solution G: weights w, adjacency matrix A

► let 
$$D = A - A^*$$

### Grothendieck problem:

$$F(D) = \max \left\{ \begin{array}{cc} 0 & D \\ D & 0 \end{array} \right) \bullet X; \quad X \text{ is symmetric, } X \succeq 0, X_{\texttt{i}\texttt{i}} = 1 \; \forall \texttt{i} \right\}$$

▶ constant-factor approximation of  $\max_{I,J \subset V} |w(I,J) - w^*(I,J)|$ 

▶ 
$$X_{i,j} \in [-1, 1]$$
 for each  $i, j$ 

**Properties:** 

$$\blacktriangleright \nabla F(D) = X^*$$



**Optimization problem:** 

$$\min\left\{F(A(w) - A^*); \sum_{e} w_e = m\right\}$$

- minimization of convex function
- ▶ bounded gradient:  $(\nabla F(D))_{i,j} \in [-1, 1]$

**Optimization problem:** 

$$\min\left\{F(A(w) - A^*); \sum_{e} w_e = m\right\}$$

▶ bounded gradient:  $(\nabla F(D))_{i,j} \in [-1, 1]$ 

#### Mirror descent theorem:

• after 
$$T = m/n$$
 iterations:

$$F(A(w) - A^*) \leq \tilde{O}(\sqrt{mn})$$

# Stochastic gradient

Stochastic gradient: JL transform

- ► release  $X^{1/2}\zeta$ , where  $\zeta \sim N(0, I)$
- stochastic gradient:  $S_X = X^{1/2} \zeta \zeta^T X^{1/2}$





# Stochastic gradient

Stochastic gradient: JL transform

- release  $X^{1/2}\zeta$ , where  $\zeta \sim N(0, I)$
- stochastic gradient:  $S_X = X^{1/2} \zeta \zeta^T X^{1/2}$

$$\blacktriangleright \mathbb{E}[S_X] = X$$



Privacy of the gradient at iteration t:

$$X = \nabla F(A(w^{(t)}) - A^*) \text{ and } \tilde{X} = \nabla F(A(w^{(t)}) - \tilde{A}^*)$$

# Stochastic gradient

Stochastic gradient: JL transform

- release  $X^{1/2}\zeta$ , where  $\zeta \sim N(0, I)$
- stochastic gradient:  $S_X = X^{1/2} \zeta \zeta^T X^{1/2}$

$$\blacktriangleright \mathbb{E}[S_X] = X$$



Privacy of the gradient at iteration t:

$$X = \nabla F(A(w^{(t)}) - A^*) \text{ and } \tilde{X} = \nabla F(A(w^{(t)}) - \tilde{A}^*)$$
  

$$X^{1/2}\zeta \text{ and } \tilde{X}^{1/2}\zeta \text{ have similar distribution:}$$

$$\mathsf{pdf}_X(x) \leqslant e^{\epsilon_0} \cdot \mathsf{pdf}_{\tilde{X}}(x) \text{ w.p. } (1-\delta_0)$$

$$\varepsilon_0 = O(\log \frac{1}{\delta_0}) \cdot \sqrt{\operatorname{tr} X^{-1}(\tilde{X} - X) X^{-1}(\tilde{X} - X)}$$

► this implies  $(\epsilon_0, \delta_0)$ -DP

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \Psi(X); X \text{ is symmetric, } X \succeq 0, X_{ii} = 1 \right\}$$

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \Psi(X); X \text{ is symmetric, } X \succeq 0, X_{ii} = 1 \right\}$$

 $\blacktriangleright \Psi(X) = \lambda \log \det X$ 

 $\blacktriangleright$   $\lambda$  determines the stability but also error

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \Psi(X); X \text{ is symmetric, } X \succeq 0, X_{ii} = 1 \right\}$$

 $\blacktriangleright \Psi(X) = \lambda \log \det X$ 

 $\blacktriangleright$   $\lambda$  determines the stability but also error

#### Claim:

▶ If  $A^*$  and  $\tilde{A}^*$  differ in a single edge, then

$$\sqrt{\operatorname{tr} \mathsf{X}^{-1}(\tilde{\mathsf{X}}-\mathsf{X})\mathsf{X}^{-1}(\tilde{\mathsf{X}}-\mathsf{X})} \leqslant \mathrm{O}(1/\lambda)$$

• crucial property of  $\Psi$ :  $D^2\Psi(X)[E, E] = -\lambda \operatorname{tr} X^{-1}EX^{-1}E$ 

# Summing up

To get  $(\epsilon, \delta)$ -DP:

► we choose

$$\lambda \approx \varepsilon^{-1} \sqrt{m/n}$$

# Summing up

To get  $(\varepsilon, \delta)$ -DP:

we choose

$$\lambda \approx \varepsilon^{-1} \sqrt{m/n}$$

We solve

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \lambda \log \det X; X \text{ symmetric PSD}, X_{ii} = 1 \right\}$$
$$\min \left\{ F(A - A(w)); \sum_{e} w_{e} = m \right\}$$

• using T = m/n iterations of mirror descent

To get  $(\varepsilon, \delta)$ -DP:

we choose

$$\lambda \approx \varepsilon^{-1} \sqrt{m/n}$$

We solve

$$F(D) = \max\left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \lambda \log \det X; X \text{ symmetric PSD, } X_{ii} = 1 \right\}$$

$$\min\left\{F(A-A(w)); \quad \sum_{e} w_{e} = m\right\}$$

• using T = m/n iterations of mirror descent

- privacy (by Advanced composition thm):  $\frac{1}{\lambda}\sqrt{T} = \epsilon$
- error due to low number of iterations:  $\tilde{O}(\sqrt{mn})$
- error due to regularization:  $\lambda n \log n \leq \tilde{O}(\epsilon^{-1} \sqrt{mn})$

# **Open problems**

## Matching the guarantee of the exponential mechanism

- multiplicative error  $(1 + \eta)$ , additive error  $O(n \log n)$
- ▶ in polynomial time?

# **Open problems**

### Matching the guarantee of the exponential mechanism

- multiplicative error  $(1 + \eta)$ , additive error  $O(n \log n)$
- ▶ in polynomial time?

Node level privacy



neighboring graphs differ in whole vertex neighborhoods

any upper or lower bounds?

# **Open problems**

### Matching the guarantee of the exponential mechanism

- multiplicative error  $(1 + \eta)$ , additive error  $O(n \log n)$
- ▶ in polynomial time?

Node level privacy



- neighboring graphs differ in whole vertex neighborhoods
- any upper or lower bounds?

## Is our result implementable?

using some convex optimization tool

# **Questions?**





https://elias.ba30.eu/

Eliáš, Kapralov, Kulkarni, Lee: Differentially Private Release of Synthetic Graphs

slide: 15/15